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Lecture - 15 

Navier Stokes Equation - Part1 

Navier-Stokes equation 

We recapitulate the Cauchy’s equation of motion that we have arrived at in the previous 

lecture. 
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Along with this equation, we have the equation for mass conservation, expressed as, 
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Note that there are three components of equation (1) for i=1,2,3 and one component of 

equation (2) (as the index j gets summed over). Therefore, we have a total of four governing 

equations.  

In fluid mechanics, the typical physical variable of concern is the velocity of the fluid, which 

is needed in multiple scenarios. However, to solve for the fluid velocity from the governing 

equations and boundary conditions, we are required to solve for other system variables as 

well. To ascertain all of them, we take a look at equations (1) and (2), which are the 

governing equations for flow. We can see that we need to solve for the density  , the three 

components of velocity vi (i=1,2,3), and the six independent components of stress tensor 

ij (i=1,2,3, j=1,2,3), i.e. a total of 10 unknowns. Note that there is another governing 

equation, the equation for conservation of angular momentum, which has three components 

for the three planes x-y, y-z, and x-z. However, we have utilized these in the previous lecture 

to bring the number of unknown stress tensor components from nine to six by establishing 

that three of the stress tensors are dependent on (more specifically, equal to) their converses, 

and therefore, there are only six independent components of the stress tensor. 

Hence, we have ten unknowns and four equations to solve them from. There is a deficit of six 

equations to close the problem mathematically. The additional six equation we require are 

obtained from the constitute formulation for the fluid, i.e. the appropriate expressions for 

the stress tensor components ij . 

Hence, in this lecture, we will focus on obtaining the appropriate expression for ij . We 

decompose the stress ij  into two parts – the first part corresponds to the stress that exists in 



the fluid when it is devoid of any motion, and is aptly called the hydrostatic component; the 

second part corresponds to the stress emerging out of the deformation occurring in the fluid 

due to motion, and is termed as the deviatoric component. 
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Clearly, the hydrostatic component of the stress tensor, 
hyd

ij , will simply be the pressure in 

the fluid (we will get to the formal expression later in the lecture).  

On the other hand, we have to formulate the deviatoric component of stress tensor, 
dev

ij , as a  

mathematical expression for flow. Based on experimental observations for many fluids from 

classical times in fluid dynamics, fluid dynamicists have determined that the deviatoric stress 

in a fluid will depend on the rate of strain of the fluid. Therefore, we take a look at the 

general expression for the rate of strain in a fluid, k
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into the form  
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Upon examination, we can observe that the first term in the RHS of equation (3) corresponds 

to rate of deformation of a fluid element due to motion whereas the second term corresponds 

to rigid body rotation of the fluid element. Since rigid body rotation is not expected to 

contribute to the deviatoric stresses emerging in the fluid, we express just the first term as, 
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and the deviatoric component of stress tensor will depend on kle . Note that like ij , kle  also 

has nine components (three for k times three for l). Therefore, kle is also a second order 

tensor. Also, note that like ij , kle also has only six independent components, since kl lke e=  – 

however, note that this symmetry occurs simply because of the definition of kle  (equation (4)) 

and we don’t have to resort to any governing equation to arrive at this symmetry. Lastly, also 

note that as we will see later, 
hyd

ij  is non-zero only for i=j, and therefore 
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Since both the deviatoric component of the stress tensor 
dev

ij , and the deformation-causing 

strain rate tensor, kle , are second-order tensors, the most general form of the dependence of 

the former on the latter will include a fourth order tensor, ijklc , which has 81 components 

(three for i times three for j times three for k times three for l). 



dev

ij ijkl klc e =           (6) 

While ijklc  in principle has 81 components, we require significantly lesser number of 

variables practically always. By appealing to the symmetry of stress and strain rate tensors, 

and isotropy and homogeneity of the fluid, we are able to reduce the ijklc  tensor to have only 

two independent components, as we shall see ahead. 

We first invoke the isotropy of the fluid. Isotropy implies that any material property is 

direction independent. In other words, changing the orientation of co-ordinate axes (i.e. 

rotating the co-ordinate axes) arbitrarily should not alter the tensor ijklc . To formally express 

this in mathematical terms, we define the scalar s as the scalar we obtain by transforming 

under the tensor ijklc , the fourth order tensor given as i j k lA B C D . Here, iA , jB , 
kC  and 

lD  

are four arbitrary vectors, each of which donate one of the indices i, j, k and l. Since the 

magnitude of and the angle between any two vectors, and therefore the dot product (which is 

simply the product of the magnitude and cosine of the angle), remain conserved under 

rotation, if we define the scalar s to be the generalized summation of the different 

combinations of the dot product of the four vectors iA , jB , 
kC  and 

lD , it will remain the 

same under rotation.  That is, 
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Note that generally,  ,   and   can vary spatially in the fluid bulk. However, for a 

homogeneous fluid,  ,   and   are constants. 

Now, we utilize the Kronecker-delta function ij  for proceeding ahead with equation (7). ij  

is defined as 1ij =  if i = j, and 0ij =  if i j . This property of ij  helps us to write any 

variable iM  as 1 1 2 2 3 3i i i i j ijM M M M M   = + + = . Using this property, we write equation 

(6) as, 
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Now, since both
dev

ij  and kle  are symmetric in i and j, and since cijkl is defined to transform 

kle to 
dev

ij , cijkl should also be symmetric in i and j. Therefore, interchanging i and j in the 

expression for cijkl should give us the same expression. This implies  = , i.e. 
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We now proceed with writing the transformation of kle to 
dev

ij , 
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Now,   represents the dynamic viscosity of the fluid and is thus replaced with   - note that 

for a unidirectional shear flow, equation (10) simply converts to 1

2

dv

dx
 = , which is the 

expression for the corresponding shear stress in terms of shear strain rate (also called 

Newton’s law of viscosity) that is taught as the preliminary introduction to viscosity in high 

school physics, with the co-efficient expressed as  instead of  . On the other hand,  is 

conventionally replaced with  , which is called the second co-efficient of viscosity. 

Therefore, we finally have the expression for deviatoric stress in terms of strain rate as 

2dev

ij kk ij ije e   = +          (11) 

In equation (11), if i=j, we obtain the expression for stress tensor that corresponds to the 

volumetric change of fluid, and is dependent on both  and  . On the other hand, if i j , 

we obtain the stress tensor corresponding to the shape change of fluid, and is dependent only 

on  . The overall deformation of the fluid is combination of volumetric change and the 

shape change. Lastly, note that for a fluid having constant density with time and over space, 

the conservation of mass (equation (2)) implies ekk is zero, implying the term with   in  

equation (11) becomes zero and therefore,   is inconsequential.  

Note that in the derivation of equation (11), we had assumed (just before equation (3)) that 

the deviatoric component of stress depends linearly on the strain rate of the fluid 

(equivalently spatial gradient of fluid velocity) and doesn’t depend on anything else. Any 

fluid that satisfies these assumptions is called as ‘Newtonian fluid’. While the vast majority 

of fluids we encounter in fluid mechanical studies are Newtonian, there are exceptions that do 

not satisfy these assumptions. Examples are power-law fluids, for which deviatoric stress 

varies with some power of the strain-rate (the power index is  simply unity for Newtonian), 

and Bingham plastics, which are characterized by an additional constant term in the 

expression for deviatoric stress. However, the fundamentals in the discipline of fluid 

mechanics pertains to Newtonian fluid and non-Newtonian fluids are studied on top of it. 

Lastly, we recall that we still have to express 
hyd

ij  mathematically. As already mentioned, 

hyd

ij  is simply because of the pressure in the fluid. Since by definition, pressure on any (real 

or imaginary) surface in the fluid acts normal to it, is independent of the direction (i.e it is the 

same along x1, x2 or x3) and is compressive in nature (i.e. positive when compressive), the 

expression for 
hyd

ij is simply 
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In equation (12), the negative sign represents that pressure is positive when it is compressive, 

the fact that p doesn’t have a subscript represents that it is same along any direction, and the 

Kronecker-delta represents that it acts along the normal direction only. Hence, substituting 

from equations (11) and (12) into equation (3), we have the expression for stress tensor in 

terms of the strain rate tensor and the fluid pressure as, 
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With equation (13) as the constitutive model for Newtonian fluids, the number of unknowns 

reduces from ten to five, as the six stress tensor components are expressed in terms of fluid 

velocity and pressure, but pressure emerges as another unknown. Hence, we are still short of 

one equation. This additional equation is obtained from the equation of state, which acts as 

the constitutive equation for fluid density. 

 

 

 

 


