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Lecture - 14 

Cauchy / Navier Equation 

Viscous Forces in Reynolds Transport Theorem (Continued) 

We recapitulate the expression for traction vector as we had obtained in the last lecture, 
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Note that we have used the (x1, x2, x3) notation for the co-ordinate system rather than (x,y,z) 

as this assists us with writing the traction vector in the compacted summation form. To make 

the notation more compact, Einstein suggested dropping the summation sign whenever the 

summation index is repeated in the summed-over expression – for such a case, the repetition 

of the index is defined to implicitly imply summation. Therefore, in Einstein notation, the 

expression for traction vector is simply, 

i ji jT  =           (2) 

Now, before proceeding with the Reynold’s equation for linear momentum conservation, we 

first take an assessment of the conservation of angular momentum conservation in the fluid as 

it is expected to give us some information regarding the stress tensor. To assess this angular 

momentum conservation however, we do not resort to the Reynold’s transport theorem 

expression for angular momentum conservation. Rather, we consider the planar rectangular 

elemental control volume presented in Figure 1, which is oriented in the x-y plane. 



 

Figure 1: Planar elemental control volume in x-y plane of unit width into the plane, the 

approximate expressions in the limiting case of 
1x and 2x being infinitesimally small are 

presented on the right for each expression after ‘ ’ 

All the stresses (i.e. the surface forces per unit area) are presented in the figure. We now 

consider the moment on the elemental control volume about the point O. Only the surface 

stresses in the colour green contribute to this moment as the other stresses pass through the 

point O. Therefore, the sum total of moment about the point O is 
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In the i jx x   after each of the brackets in the middle term in equation (3), the first term 

x (
ix ) is the distance of the force from O and the second x ( jx ) is the length of the side. 

Now, the net moment on the elemental control volume should equal the angular momentum 

of the control volume, i.e, 
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From equations (3) and (4), we have (upon equating OM  from each equation and then 

dividing by 
1 22 x x  ), 
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Considering the elemental control volume to be arbitrarily small, the RHS in equation (5) 

vanishes and we have, 

12 21 =           (6) 

Similar analysis on elemental control volumes oriented along x-z and y-z planes can be done. 

Collectively from these analyses, we have, 

ij ji =           (7) 

Therefore, out of the nine components of the stress tensor, only six are independent due to the 

symmetry obtained in equation (7). 

However, a word of caution is required here. In obtaining equation (7), we have assumed that 

there are no other moments on the elemental control volume in figure 1 apart from the ones 

due to the boundary surface stresses. Examples where such is not the case are fluid with 

rotating particulate matters and micropolar fluids. In technical terminology, such scenarios, 

and any other cases where couples apart from boundary surface stresses emerge, the fluid is 

said to consist of ‘body couples’, which need to be accounted for and which break the 

symmetry observed in equation (7). 

As a consequence of (7), equation (2) becomes, 

i ji j ij jT    = =          (8) 

Now, we recall the equation corresponding to Reynold’s transport theorem for conservation 

of linear momentum, 
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Following the convention in fluid mechanics, we interchange the LHS and RHS of equation 

(9) and we replace the expression for F from equation (2) of the last lecture. 
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Now, converting equation (8) from index notation to vector notation, we get   
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Substituting from equation (11) into equation (10) we have 
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Now, we apply the divergence theorem on the second term of the LHS and the first term of 

the RHS of equation (12) to get, 
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Note that the objective of defining a stress tensor and of expressing the traction vector as 

presented in equation (11), particularly in the purview of fluid mechanics, is to eventually 

apply the divergence theorem (as has been done in obtaining equation (13)). And the reason 

for wanting to apply divergence theorem is so that the different integrals in the integral 

equation for momentum conservation convert into integrals over the volume of the control 

volume – this assists in getting rid of the integral later, as we shall see. 

Now, to simplify the analysis ahead, we assume the control volume to be non-deforming (i.e. 

t




 moves into the integral in the first term of LHS of equation (13) without requiring any 

modifications) as well as stationary (i.e. rv v= ). With these assumptions, equation (13) 

becomes 
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Note that we could consider control volume to be deforming as well as non-stationary (even 

accelerating). In such a situation, we would have to consider the appropriate correction terms 

to the first integral on LHS and to the body force term on the RHS to account for the control 

volume deformation and acceleration respectively. However, we would still arrive at the 

same result as equation (15) ahead. Therefore, the simplifying assumptions of non-deforming 

and stationary control volume have been made to avoid unneeded tedium. 

Now, since the control volume is arbitrarily shaped, the integral in equation (14) will be zero 

only when the integrand itself is zero. Therefore, we get the equation, 
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Equation (15) can be expressed using index notation as well, as below, 
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Furthermore, equation the LHS of equation (16) can be expanded as  
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The left square-bracketed term in equation (17) is zero due to mass conservation. We 

therefore arrive at an alternate form of equation (16) as 

iji i
j j

j j

v v
v b

t x x


 
   

+ = + 
    

        (18) 

Equation (16) (and equivalently equation (18)) is called the Cauchy equation of motion (or 

the Navier equation). Furthermore, note that since equation (16) has been derived purely as a 

consequence of conservation of momentum, it is called the ‘conservative form’ of the Cauchy 

equation. On the other hand, equation (18) is derived by conjugating momentum conservation 

with mass conservation, it is called the ‘non-conservative form’ of the Cauchy equation. The 

conservative form is useful for computational methods like finite volume method, where 

conservative forms of differential equations are integrated to discretize the equation. On the 

other hand, the non-conservative form  is used in analytical studies and is more insightful 

physically, as upon examination, one can see that the LHS of equation (18) is simply the 

density times material acceleration of the fluid, i.e. iDv

Dt
 . 


