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Lecture - 13 

Introduction to Traction Vector and Stress Tensor 

Viscous Forces in Reynolds Transport Theorem 

Many practical forces an engineer encounters have viscosity as an integral part of the inherent 

physical effects, and therefore, it is crucial to quantify the contribution of viscous forces in 

the mathematical description of flows. For the same, we start with the general expression of 

Reynolds transport theorem for linear momentum, 
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Equation (1) is the general equation that applies to both a stationary control volume and a 

control volume moving with a constant velocity. Furthermore, it can also be applied to a 

control volume that is accelerating provided the appropriate correction terms are added to the 

LHS, i.e. the pseudo forces corresponding to the control volume’s acceleration are included. 

In continuum mechanics, there are two types of forces that can apply on an arbitrary parcel of 

fluid (this applies to other types of materials as well). The first type is the surface forces and 

the second type is the body forces, i.e. surface bodyF F F= + . For a particular control volume, 

surface forces are the forces that act on the control surface of the control volume. These 

forces are typically expressed as force per unit area. On the other hand, the forces that act on 

the volume of the fluid in a control volume are categorized as body forces. These forces are 

typically expressed as force per unit volume. 

Surfaces forces can be mathematically represented using the traction vector, which is 

demonstrated in figure 1. In the figure, the traction vector T applies on the elemental area 

marked in yellow on the bigger control surface. 

 



 

Figure 1: Traction vector on the arbitrary elemental area (yellow region) which is part of the 

bigger control surface 

The traction vector is dependent on the orientation of the surface on which it is being 

considered, i.e., considering a different elemental surface at a different orientation will give 

us a different traction vector. Mathematically, the orientation of an elemental surface is 

represented by the normal vector to it,  , and therefore, to signify the dependence of  traction 

vector on the control surface’s orientation, a superscript   is applied to it, i.e. the traction 

vector is T


, and its components along the three co-ordinates x, y and z are xT , yT
 and zT  

respectively (or equivalently, its components along the three co-ordinates x1, x2 and x3 are 

1T , 2T  and 3T respectively). On the other hand, we denote the body force per unit volume 

by b . Therefore, the LHS of equation (1) simply becomes, 

surface body

CS CV

F F F T dA bdV


= + = +          (2) 

Next, we seek to express the traction vector T


in terms of some known parameters, which 

are the stress tensor components. Note that the stress tensor components are not explicitly 

known but for most fluids can indeed be expressed as functions of the local velocity gradients 

in the flow. 

To obtain the stress tensor in a fluid, let us consider the arbitrary cuboidal control volume 

shown in figure 2. 



 

Figure 2: Cuboidal control volume with the stress components on the two faces normal to the 

x-axis (or equivalently x1-axis) represented 

In figure 2, we have chosen the six surfaces to be oriented perpendicular to the co-ordinate 

axes. For the special case of these surfaces, the traction vector along each surface is 

represented using the symbol  rather than T . That is the three components of the traction 

vector perpendicular to x (or x1), i.e. x

xT , 
x

yT and x

zT (or 1

1T , 1

2T  and 1

3T ) are simply written as 

xx , xy  and 
xz  (or 

11 , 
12  and 

13 ) respectively. In the expression for the  ’s, we can see 

that two indices are required – the first index represents the direction normal to the plane on 

which force is being considered and the second index represents the component of the force. 

In all, there are 3 x 3 i.e. 9 components for ij . Hence, ij is more general than a vector, which 

only has three components. Such variables that require two indices rather than one (and hence 

having nine components rather than three) are called as tensors (more specifically second 

order tensors), and ij is the stress tensor. It should be noted that a second order tensor maps a 

vector on to a vector. Similarly, there are higher order tensors – for e.g. fourth order tensors 

exist, which map a second order tensor onto a second order tensor. 

While the stress tensor is specific to the surfaces being perpendicular to the co-ordinate axes, 

the traction vector doesn’t have any such restriction and we should be able to describe a 

traction vector for any choice of a control surface. Therefore, it is of interest to obtain an 

expression for an arbitrary tensor T


in terms of the stress tensor. Towards this end, let us 

consider the arbitrary control volume presented in figure 3.  



 

Figure 3: Tetrahedral control volume OABC used to express the traction vector in terms of 

the stress tensor 

 

In figure 3, we consider the control volume enclosed in the tetrahedron OABC. Let us 

represent the distance of point O from the surface ABC (i.e. the length of the vertical line 

dropped from O onto ABC) as h. Also, the normal vector to the surface ABC is 

1 1 2 2 3 3 ( or )x x y y z ze e e e e e      = + + + + . As can also be seen, the normal to the surface 

AOB is 1 ( or )xe e− , the normal to the surface AOC is 2 ( or )ye e−  and the normal to the 

surface BOC is 3 ( or )ze e− . 

We now express the x-component force balance for this control volume. 
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Now, the volume of the control volume is ABC

1

3
hA , where ABCA  is the area of the surface 

ABC. Further, representing body force per unit volume as b , equation (3) becomes 

 ABC 1 2 3 4 ABC

1 1

3 3
x xhA a F F F F hA b = + + + +       (4) 

In equation (4), F1, F2, F3 and F4 are the forces on the surfaces OBC, OAB, ABC and OAC 

respectively. The sum of these four forces exhausts the surfaces forces on the control volume 

OABC. Further, note that the force per unit area on the surfaces OBC, OAB and OAC, as per 

the definition of stress tensor components, are 
zx , xx and yx  (or 

31 , 
11  and 21 ) 

respectively. Hence, the x-force on the surfaces OBC, OAC and OAC (i.e. F1, F2 and F4 

respectively) are these stress tensor components (which are force per unit area) multiplied by 

the respective surface area, i.e. 
OBCzx A− , OABxx A− and OACyx A−  (or 

31 OBCA− , 
11 OABA−  and 



21 OACA− ) respectively – the minus signs appear because the normal to these surfaces are 

directed along the negative co-ordinate axes, as specified earlier. Similarly, following the 

definition of the traction vector, the x-force on the surface ABC (i.e. F3) is ABCxT A (or 

1 ABCT A ). Substituting these in equation (4) and doing some re-arranging of terms gives us 
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Now, looking at the surfaces in figure 3, we can recognize that OBC, OAB and OAC are 

simply the projections of the surface ABC on the xy, yz and xz (or x1x2, x1x2 and x1x2). As a 

result, the areas of OBC, OAB and OAC are simply the area of ABC multiplied with z , 

x and y  (or 3 , 2  and 1 ) respectively. Hence, substituting these expressions in equation 

(5), we have 
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Lastly, we take the limit of 0h→ , due the which the LHS of equation (6) vanishes. Hence, 

we have, 

ABC

ABC 11 1 21 2 31 3 1 1 11 1 21 2 31 3

0 ( ) 

(or ( ))

xx x yx y zx z x x xx x yx y zx zA T T

A T T

 

 

           

           

= + + −  = + +

+ + −  = + +
   (7) 

Following similar procedure, the expressions for the other two components of the traction 

vector are obtained. Collectively, these three expressions are as presented below. 
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These expressions can be represented in array-matrix form as well – 



1 11 21 31 1

2 12 22 32 2

3 13 23 33 3

where
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