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Lecture - 11 

Reynolds Transport Theorem: Arbitrarily Moving Control Volume 
 

I. Arbitrarily Moving C.V. 

In some engineering problems, it can be more fruitful to consider a moving reference frame 

rather than a stationary frame. However, in order to do an analysis in such a reference frame, 

the governing equations might have to be modified to be applicable in this new reference 

frame. Therefore, in this lecture, we will first consider an arbitrarily moving reference frame 

and assess how to make any modifications to the governing equations that would be required. 

 

a. Chasle’s Theorem 

Let us consider a vector ( )A t  which is fixed in a rotating reference frame rotating with 

angular velocity   in the counter-clockwise direction. However, A  will move in a fixed 

reference frame as presented in figure 1. 

 

Figure 1: Motion in a fixed reference frame of vector ( )A t  that is fixed in a c.c.w. rotating 

reference frame with angular velocity of  . 

The expression for 
dA

dt
in the fixed reference frame is given as, 
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In equation (1), we have made use of the facts:  

(a) the ˆ ˆ
re e− system is oriented such that ˆ

re is along ( )A t and ê is perpendicular to it,  

(b) for small enough t ,  will be so small that we can consider tan     and the 

angle between ( )A t and A is 900, due to which, ( ) tan( )A A t A  =    . 



Now, angular velocity of the rotating reference frame can be expressed as ˆ
ze = . Taking 

the cross-product of this angular velocity with A is, 

ˆ .ˆ ˆ
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Substituting this expression in equation (1), we write, 

.
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A
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While equation (3) is the expression for the time-derivative of a vector A that is fixed in the 

rotating frame, this is also the additional term for the transformation of time-derivative from a 

fixed to a rotating reference for any vector, even if moving with respect to the rotating 

reference frame. Summarily, if we represent a fixed reference frame by subscript XYZ and an 

arbitrarily moving reference frame by subscript xyz , then the counterpart of equation (3) for 

any arbitrary vector  B , which is allowed to move w.r.t. xyz also, is, 

XYZ xyz

dB dB
B

dt dt
= +  .        (4) 

Equation (4) is called Chasle’s theorem. 

b. Fluid Acceleration in Arbitrarily Moving Frame 

When considering conservation of fluid momentum, we are primarily concerned with fluid 

acceleration, which essentially implies a second derivative of position vector with time. 

Therefore, we need to find an expression relating the second derivative of position with time 

in the fixed reference frame and the arbitrarily moving reference frame. If the origin of the 

moving reference frame xyz is located at 0R with respect to the fixed reference frame XYZ , 

then the position vector w.r.t. the fixed reference frame, denoted by R  is expressed in terms 

of the position vector w.r.t. the moving reference frame, denoted by r , and the vector 0R as 

0R r R= + . Taking a time-derivative, we have, 

0 .
XYZXYZ XYZ

dRdR dr

dt dt dt
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Substituting 

XYZ

dR

dt
as B in equation (4), we get, 
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Now, using equation (4) on the second term on RHS in equation (6), we proceed as, 
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Put together, equation (7) gives, 
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Interchanging the first and second terms of RHS of equation (8) and re-writing, we have, 

  ( ) 2 .xyz CV xX yz xyz xyz xyzYZ rela a a r r V a a   +    + = + + = +     (9) 

where, XYZa  is 
2

2

XYZ

d R

dt
, the acceleration of fluid particle w.r.t. the fixed reference frame, xyza  

is xyzr , the acceleration of fluid particle w.r.t. the moving reference frame, and CVa  is 

2

0

2

XYZ

d R

dt
, the acceleration of the moving frame itself. 

In RHS of equation (9), the first term xyza  is the acceleration of the fluid particle with respect 

to the moving frame and the rest of the terms are collectively termed as the relative 

acceleration 
rela .  

c. Reynold’s Transport Theorem in Arbitrarily Moving Frame 

Having obtained the expression for acceleration of a fluid particle w.r.t. an arbitrarily moving 

reference frame, equation (9), we write the Reynolds Transport Theorem (R.T.T.) for 

arbitrarily moving control volume. 

Starting with the general expression for Reynold’s theorem, 
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we recognize that the relative velocity of R.T.T. rV  is with respect to the moving frame xyz , 

and, the the L.H.S. can be simplified to, 
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In equation (11), we have substituted the expression for xyza  from equation (9). Since XYZa  is 

the acceleration w.r.t. a fixed reference frame, it equals the force per mass in accordance with 

the second law of motion, i.e.  

XYZ sys
sys

dma F= .         (12)  

Since R.T.T. was derived for vanishingly small time interval t , the C.V. coincides with the 

system and cvsysF F=  . Therefore, equation (10) for an arbitrarily moving control 

volume is obtained as, 
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which is the expression for R.T.T. in an arbitrarily moving control volume.  

Summarily, we can use the Reynolds transport theorem for an arbitrarily moving control 

volume for momentum conservation, but with the correction term that is the second term in 

LHS of equation (13). This term is an additional effective force, i.e. a pseudo force that acts 

on a fluid element when observing it from an arbitrarily accelerating reference frame. 

So, this pseudo force is a combination of four different components, corresponding to the 

four terms of 
rela . The first component is the classical pseudo force we came across when 

studying dynamics of point particles in accelerating reference frames. The second component 

is the centrifugal force due to rotation of the frame, another classical force previously studied 

in the context of point-particle dynamics. Centrifugal force in a rotating from is the 

counterpart of centripetal acceleration in an inertial frame (fixed frame is a subset of inertial 

frame). While the former appears as a subtraction to the force term in the force balance in the 

rotating frame, the latter appears as an addition to the acceleration in force balance. 

Therefore, care must be taken not to double-count this term by taking both centrifugal force 

as well as centripetal acceleration in a force balance equation. The third component is called 

Euler Force, which is the force due to angular acceleration of the reference frame. The fourth 

and final component is called as the Coriolis force. This is a lateral force that acts on a fluid 

particle due to its translation relative to a rotating reference frame. This force contributes 

significantly to ocean currents with the earth being the rotating frame. Hence, Coriolis force 

is very important in fluid mechanics and in the broad purview of geophysical fluid dynamics. 

Illustrative Example:  

To elucidate the concept presented in this lecture, we consider the illustrative example of the 

motion of a rocket. Consider the rocket going vertically upward with speed RV , and ejecting 

burnt fuel vertically downward at speed eV  (relative to rocket), out of the small opening of 

area eA . The system schematic is presented in Figure 2. Assume gravity acts vertically 

downwards. Initial mass of rocket with the fuel was 0m  and   is the density of the fuel. 

Obtain an expression for RV . 



 

Figure 2: Schematic of the Illustrative Problem 

Soln. –  

To solve this problem, consider the C.V. co-incident with the rocket, presented with Figure 3. 

The forces on the rocket will be gravity (acceleration due to gravity is g ) and a vertically 

downward drag force DF , as illustrated in Figure 3 as well. 

 

 

Figure 3: C.V. to solve the Illustrative Problem 

 

Hence, writing the y -component of momentum balance equation for this control volume, 
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where RM is the instantaneous mass of the rocket. In equation (14), In writing the bottom 

equation in equation (14) from first, note that: 

(a) The frame is accelerating but not rotating and therefore, ( )rel ya has only the first 

component and is thus equal to ( )CV ya .  

(b) Velocity of fuel in the rocket has zero velocity w.r.t. the rocket (and the attached 

C.V.), i.e. ( ) 0y xyzV = . 



(c) The second term in RHS of top equation in equation (14) applies only at the burnt fuel 

outflow hole and equals 2

e eA V− . 
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Integrating equation (15), the expression for RM is, 

0 .R e eM m v tA= −           (16) 

The expression for ( )CV ya  is simply the acceleration of rocket, i.e. RdV

dt
. Substituting this, and 

RM from equation (16) in equation (14), and neglecting the drag force DF , we have, 

2

0

g.e eR

e em

AVdV

d tt AV




= −

−
         (17) 

Integrating equation (17) will give the expression for RV as a function of time. 

We discuss the roles of different forces. First, the role of the drag force and of gravity is to 

push the rocket vertically down. In contrast, the role of the momentum flux is to proper the 

rocket upwards. In other words, it can be said that the rocket goes up by either Newton’s third 

law or the conservation of momentum.  

Before concluding the lecture, we discuss one conceptual anomaly needs to be resolved. 

While deriving the R.T.T. for the arbitrarily moving CV, equation (13), we had considered a 

fixed mass, and therefore, xyz xy
sys sys

z

d
dmV dma

dt
=   held true. However, in the illustrative 

example above, we encounter a variable mass. Hence, we could be required to incorporate the 

effect of variable system mass when doing our analysis for the illustrative example. However, 

this issue gets circumvented by ‘freezing’ or ‘snapping’ the phenomenon at an instant of time 

when the system and control volume are merging. That is, the instantaneous mass of the 

system and the instantaneous mass of the control volume are equal due to convergence of the 

system and control volume in the limit of 0t → .  


