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Lecture - 10 

Reynolds Transports Theorem: Mass and Linear Momentum Conservation 

I. Illustrative Example on Conservation of Mass Integral Formulation 

In the previous lecture, we obtained the differential form of the conservation of mass using the 

Reynolds transport theorem. However, even retained in its integration form, the Reynolds 

transport theorem used for mass conservation can be useful for certain problems. We illustrate 

this point with an example. 

Consider a flat plate of length L , coming down with a constant vertical velocity 0V  towards a 

fixed boundary. Between the moving plate and the fixed boundary, there is a fluid with constant 

density  , which is getting squeezed out on both the sides due to the decreasing gap between 

the plate and fixed boundary. Assume that the velocity profile at the outlet is given by u  whose 

expression is,  
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where h  is the instantaneous gap between the two plates. The complete system is illustrated in 

Fig. 1. 

 

Figure 1: A flat plate approaching a fixed bottom with fluid draining from the sides as per the 

velocity distribution specified 

Find:  

(i) the expression for h  as a function of time t , given that the starting height of the 

plate above the bottom fixed boundary is 0h   

(ii) the expression for 0u  as a function of time t   



Soln. – The answer for the first part is straightforward. The velocity of the top plate being 0V

implies 
dh

dt
is 0V− . Integrating from 0t = to t , we have, 
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For the second part, we have to consider a control volume. We have two choices for control 

volume, either a fixed control volume that coincides with the fluid for the time-instant we are 

considering, or a shrinking control volume with that is coincident with the fluid for all time. 

Either of these control volumes is taken over the right half only as there is no flow at the 

centreline due to symmetry. These control volumes are presented in Fig. 2 below. The 

representation of either control volume is the same, i.e. ABCD, but difference between the 

fixed and the shrinking control volumes is that the face CD is stationary for the fixed control 

volume and is moving vertically downward with speed 0V  for the shrinking control volume. 

 

Figure 2: Control Volume (Fixed and Shrinking) represented 

We consider the fixed control volume first. The mass conservation equation is, 
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Since the control volume is fixed, the first term on RHS of equation (3) is zero, and the third 

term consists of two components. The first component is due to the fluid entering at the top, 

and amounts to an mass outflow rate of 0
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V Lb− , where b  is the width of the plate inside 

the plane of paper. The second component is due to the outflow at the side and amounts to an 

mass outflow rate of 
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In equation (4), we have employed the expression for ( )u y and the obtained expression for ( )h t

as given in equation (2). 

Considering the shrinking control volume now, the first term of equation (3) will be non-zero, 

and will be expressed as 0
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. On the other hand, the second term, i.e. the 

boundary flux term will constitute not two terms but only the outward flow at the sides, i.e. 
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solution as obtained with a fixed control volume. 

Summarily, we have observed that while solving with the two different control volumes require 

distinctive paths, the final solution converges to the same. Also, it should be noted that in terms 

of pictorial representation, both control volumes look identical, i.e. ABCD in Fig. 2. However, 

they are distinctive in terms of a moving boundary, which had to be brought out in terms of 

textual description of the control volume. Therefore, it is crucial that one should properly 

represent the control volume using a combination of pictorial and textual description when 

doing a Reynolds transport theorem analysis of a flow problem. 

 

II. Conservation of Linear Momentum 

We now obtain the integral form of conservation of linear momentum from the Reynolds 

transport theorem. To do so, the elementary extensive property dN is mvd , and the 

corresponding intensive property n is v . Substituting these in the Reynolds transport theorem 

gives, 
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The LHS of equation (5) is the time rate of change of momentum for the control mass system, 

and as per Newton’s second law, it equals to the force on the control mass system. Since the 

control mass is co-incident with the control volume at the time-instant when equation (5) is 

applied, the force on control mass system is equal to the force on the control volume. Therefore, 

equation (5) can be written as, 
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While there isn’t a relation between the force and momentum change rate for a control volume 

from fundamental physical principles, we have obtained a relation between these two in 

equation (6). This has been possible thanks to the Reynolds transport theorem, which relates 

the control mass system description to the control volume description, and we have Newton’s 

second law hold true for the former. In the expression for control volume, apart from the 

expression for time-rate of change of momentum in the control volume (i.e. the first term in 

RHS of equation (6)), there is a term corresponding to net flux of momentum out of the control 

volume as well (i.e. the second term in RHS of equation (6)). Equation (6) is sometimes called 

as momentum theorem, but it is fundamentally Reynolds transport theorem applied for 

momentum conservation. 



 We now consider an example to elucidate the conservation of linear momentum. Consider the 

flow over a flat plate where the fluid velocity is uniformly u
at the start of the plate and is 

given by the expression 
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at a length L downstream, where  is the 

thickness of the boundary length at length L downstream. Find the force on the plate due to the 

fluid. The system is represented in figure 3. Consider the density of the fluid to be constant. 

 

Figure 3: Flow over a plate starting at the left end and developing to a boundary layer of 

thickness  at length L downstream. 

Soln. – To solve this problem, we first need to choose a control volume. We first consider the 

simple choice of a rectangular box ABCE. The problem is this control volume is that due to 

the different velocity profiles at AE and BC, we would have a mass flux at EC, which would 

complicate the analysis. On the other hand, considering once face of the control volume co-

incident with a streamline ensures there is no mass or momentum flux across this face. 

Therefore, we consider a control volume ABCD, where CD is along a streamline. Both these 

control volumes are illustrated in Fig. 4. 

 

Figure 4: Control volumes ABCD and ABCE for applying Reynolds transport theorem 

conservation equations.  

Therefore, we first use mass conservation to obtain the expression for 0h . Since there is no 

mass flux across CD due to being co-incident to a streamline, and there is no mass flux across 

AB since it is co-incident with the plate, the mass entering over AD should equal the mass 

leaving over BC, i.e. 
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In equation (7), b is the width of the plate.  



Now, we will apply this momentum balance. We re-iterate equation (6), 
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We consider only the rightward direction component of equation (8), taken as the positive x –

direction. If the force per unit width on the plate due to the fluid is taken as F  in the rightward 

direction, then the force per unit width on the fluid due to the plate is F in the leftward 

direction. Therefore, The LHS of equation (8) becomes Fb− . Since the control volume is fixed, 

the first term in RHS of equation (8) is zero. Further, there is no momentum flux across AB 

and CD. The momentum flux across DA is 
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Substituting the expression for 
u

u

in equation (9), we get 
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