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So, this phi is the viscous dissipation function which let me write the expression of this in an

index notation. This we have derived earlier but let me just write it.
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So, phi - so this we have derived earlier. So, can you recall that what are the assumptions

under  which this  is  valid? This  is  not a general,  for any general  situation this  is  not  the

expression for viscous dissipation.  For what kind of fluids? Yes.  Homogenous,  Isotropic,

Newtonian and Stokesian fluid because we had used lamda is equal to minus two third mu in

this derivation.

So, Stokes hypothesis has to be valid. So, in the usual index location u1 means u, u2 means v,

u3 means w, x1 means x, x2 means y, x3 means z. So now let us see, first of all u is a

function of y only and there is no other velocity component.  So u1, terms with u1, with

derivative with respect to x2 will only be there, right? So only del u1, del x2, that term will be

there. All other terms will be zero.



So, all these terms will be zero. So, this will be there. This will be zero, this will be zero and

this will be zero. So, this becomes this for this particular problem. Now let us come to the

energy equation. This is zero because it is steady flow T is not a function of x, so this is zero

and this is zero because v is zero. So, if there is a hole in the plate, then you will have the dT

dy term.

So not that the left-hand side always become zero. You have to be careful about the situation

and then put that understanding into the mathematical terms because T is not a function of x,

this is zero. So, you are left with k d2T dy2 plus mu phi is equal to zero. What is this phi? Phi

is du…du dy square, so this is u1 square by H square. So d2T dy2 plus mu u1 square by k H

square is equal to zero.

This is our governing differential  equation.  Now for the boundary conditions we have to

assume one of the plates to be hotter than the other. Let us take the example that T1 is greater

than T0. If the two plates are at the same temperature, then it is not an interesting problem for

heat transfer. But even then, we will see that if the two plates are at the same temperature

there is some interest in the heat transfer scenario because of the existence of this term. 

So, there is a heat source. Now, let us first complete the solution of this problem.
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So, let us integrate it once, dT dy plus mu u1 square by kH square y is equal to c1, c1 c2 we

have used, so c3, T plus mu u1 square by K H square, y square by 2 is equal to c3, y plus c4.

What are the boundary conditions? At y is equal to zero, T equal to T0 and at y equal to H, T



equal to T1. So, the first boundary condition tells, that c4 is equal to T0. Right, at y equal to

zero, T is equal to T0, so c4 is equal to T0. At y equal to H, T equal to T1. 

So, at y equal to H, you have T1 plus mu, mu one square by k H square into H square by 2 is

equal to c3H, plus c4 is T0. So, you have c3 is equal to T1-T0 by H plus mu u1 square by 2 k

H. So, the solution is T plus.
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So, the solution is T plus mu u1 square by k H square, y square by 2 is equal to c3y plus c4.

So, we can write, T minus T0 is equal to T1 minus T0 multiplied by y by H plus mu u1

square by 2k multiplied by y by H minus y square by H square. So, you can see that the

temperature distribution is because of two components. This component is because of what?

This is because of heat conduction. You can see this is a linear temperature profile.

This is because of heat conduction and this is because of viscous dissipation.  So, the net

change in temperature is due to a combination and here a linear combination because the

governing equation is linear, is because of a combination of heat transfer due to conduction

plus heat transfer due to viscous dissipation.  Now what is the matter of our interest is to

calculate the heat flux.

So, what is our intuition. Intuition is that this top plate is at a higher temperature than the

bottom plate, so heat has a natural tendency to flow from the top plate to the bottom plate.

That is the common intuition. Now let us see, let us find out what is the heat flux, so dT dy.

dT dy is T1 minus T0 by H plus mu u1 square by 2k into one by H minus 2y by H square.
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So, let us find out what is dT dy at the top wall. So, what is dT dy at y equal to H? First term

is due to conduction and the second term arises due to viscous dissipation present within the

fluid. One very important thing to note from this equation is that when the two plates are at

same temperature or T1 is  equal to T0, then also one can obtain a non-zero temperature

gradient at the top wall. 

So, the viscous dissipation which acts as a source of thermal energy causes this temperature

gradient. Now, the heat flux at the top wall can be obtained by using the above temperature

gradient in the following way. qH is equal to minus k dT by dy at y is equal to H is equal to

minus k multiplied by T1 minus T0 by H minus mu ul square divided by 2kH. Rearranging

different terms.

We obtain the heat flux at the top wall as qH is equal to minus k multiplied by T1 minus T0

divided by H multiplied by one minus mu multiplied by M1 square divided by 2k multiplied

b T1 minus T0 is equal to minus k multiplied by T1 minus T0 by H multiplied by one minus

cp multiplied by T1 minus T0 multiplied by mu cp by k.
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The above representation is of prime importance from the view point of understanding the

physical process in terms of non-dimensional numbers which are the combination of different

physical parameters, combined effect of which govern the heat transfer process. The right-

hand side of this equation can be represented in terms Prandtl number defined as Pr is equal t

mu cp by k and Eckert number defined as Ec is equal to u1 square by cp multiplied by T1

minus T0.

Prandtl number, Pr represents the ratio of momentum diffusion and thermal diffusion, while

the  Eckert  number  (Ec)  is  basically  the  ratio  of  kinetic  energy associated  with  the  fluid

velocity and the thermal energy associated with the temperature difference. So, the heat flux

at the top wall can be written as qH is equal to minus k multiplied by T1 minus T0 by H

multiplied by one minus Ec multiplied by Pr divided by 2. 

Now we have expressed the heat flux in terms of temperatures at the two walls and the two

important non-dimensional numbers which are Ec and Pr. A closer look into this equation

reveals that the direction of heat flux is solely governed by the following two terms T1 minus

T0 and one minus Ec Pr divided by 2. Relative sign of these two terms decides the direction

of heat flux. 

So, for the case T1 greater than T0, the direction in which the heat through the top plate will

depend on the magnitude of the dimensionless group Ec Pr that is a, if EcPr less than two

implies qH less than zero and the heat will flow from the upper to the lower plate as per

intuition.  If  on the other hand Ec Pr greater  than two implies  qH greater  than zero then



interestingly the heat flow from the lower plate to the upper plate even though the upper plate

is at a higher temperature as compared to the lower plate.

So, in this particular case there is no heat transfer between the top plate and the bottom plate

because that will violate the second law of thermodynamics. So, in this case due to viscous

dissipation, locally, the temperature near the upper plate becomes more than T1 and hence

heat transfer takes place from the lower plate to the upper plate.

Here the viscous dissipation basically acts as a heat source. So as if there is a heater sitting in

lower plate which is making the local temperature more than T1. This is something which is

non-intuitive. Finally, if EcPr equal to two implies qH is equal to zero and the upper plates

acts as an insulator. Here despite a temperature gradient being present between the two plates,

there is no heat transfer. 

This is because the temperature difference created due to the viscous dissipation is exactly

nullified by the conduction between the two plates. So, there is zero net heat flux. So, the

product (and not the Eckert number alone) determines the strength of viscous dissipation in

heat transfer. Based on the value of this product, the direction of heat transfer between two

plates will change. 

This  kind  of  analysis  is  very  important  in  determining  the  heat  transfer  in  bearings.  In

bearings, the temperature of the shaft and its outer casing is very important as the viscosity of

the lube oil is a function of temperature (although we have considered the viscosity to be a

constant  for the present case).  Top wall  towards the bottom wall,  at  the top wall,  that is

something very little because of the natural temperature difference between the top plate and

the bottom plate. 

However, when Eckert and Prandtl number becomes greater than two, then despite the top

plane  greater  than,  I  think the  temperature  greater  than  that  of  the  bottom plate  there  is

actually the heat transfer of the bottom to the top. This is something which is non-infinitive.

So actually, there is no direct heat transfer between the bottom plate and the top plate because

that will violate the same wall boundary linings.



So, what is happening is that because of viscous dissipation locally here the temperature is

becoming greater than T1. Viscous dissipation essentially is in line with heat source. So, I

think there is a heater setting here that heater is making the local temperature greater than T1.

So, there is a heat transfer from T1 to T0. But this is something which is not included. The

third  case  is  interesting  that  despite  our  temperature  gradient  being  created  by  a  natural

boundary condition there is no heat transfer.

So why it is happening like that? It is happening like that because this heat transfer because

of the temperature difference created by viscous dissipation is exactly nullified by the heat

transfer because of the heat conduction between these two. So, there is zero break heat flux.

So that you can also see mathematically. This is the heat transfer; this term is equationally

what the heat transfer through conduction. 

This term is the representation of the heat transfer in viscous dissipation and you can see that

when  they  are  exactly  nullified  each  other  the  heat  will  pass  this.  That  is  what  is  the

physically founded. So, the very important message is that, the Eckert number into Prandtl

number  is  done  by  the  Eckert  number,  but  the  Eckert  number  into  Prandtl  number  that

decides the strength of viscous dissipation in heat transfer.

And based on the value one can have interesting upper edge inversions of the direction of the

flux.  So  (())  48:36)  what  is  happening  is,  there  is  local  rise  in  temperature  because  of

viscosity  and that  creates  the (())  (48:46).  So,  this  kind of analysis  is  very important  for

analyzing heat transfer in bearings. So, one can understand the temperature distribution, the

heat flux and so on in bearings.

And why temperature bearings temperature in the gap between the shaft and the outer casing

is important. It is important because the entire functionality of the oil, which is say a lube oil,

it depends strongly on the viscosity of the oil. And the viscosity of the oil is a strong function

of temperature. So here, for simplicity we have assumed that mu is a constant. But in practice

mu is not a constant. 

Viscosity of the oil, if it varies the temperature of the oil, it can vary thus dramatically and

that will dramatically alter the performance of the bearing. So, in the practical engineering

scenario also this appears to be very important. So, to summarize the discussion so far, in



convection, we started with derivation of the energy equations. Of course, before that we had

a preliminary discussion on fluid mechanics and then we had derivation of energy equation.

And we analyzed cases of flow over flat plate for different Prandtl numbers and internal flow

that  is  flow through parallel  plate  channel  and circular  pipe.  In boundary conditions  like

constant volume and constant volume plus and we also have considered the examples where

viscous dissipation is important as has been discussed today. So, we will be having some (())

(50:34) problems for this portion of the scenes of nature that we had, these projects will be

uploaded.

And this  will  be discussed extensively in the tutorial  sessions. As I  told you the type of

problems that you will face for this part of the discussion is not dramatically different from a

derivation that we have done. These derivations all are actually problems. So, in some cases

boundary conditions may be changing, some cases one additional term may come in, some

case velocity profile will change. 

Please try to (()) (51:15) but the entire (()) (51:18) these problems is what exactly what we

have discussed in the class for this portion. So, we will stop this lecture now.


