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Lecture 51
Viscous Dissipation - I

So far, we have discussed the cases in which the viscous dissipation is not important. We

have discussed forced convection over surfaces and we have discussed forced convection

within a duct or a pipe but in all those cases we have not considered the viscous dissipation to

be  important.  Now in  Engineering,  there  are  many practical  situations  when the  viscous

dissipation is important. 

So, we will now try to analyze one or two example scenarios where the viscous dissipation

becomes important.
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So,  our  agenda now is,  some cases  in  which  viscous  dissipation  becomes  important.  To

analyze this scenario, we will consider a model problem. For every physical scenario, we

consider certain representative problems like for internal flow we consider flow through a

parallel plate channel. So here we will consider a model problem which is called as Couette

flow.  So,  this  kind  of  fluid  flow is  often  discussed  in  fluid  mechanics  in  this  particular

fashion.



Let  us  say  you  have  two  parallel  plates.  This  is  a  very  simplistic  representation  of  the

scenario. You have two parallel plates separated by a narrow gap of H. This gap is narrow

and there is a relative translational motion between the two plates. That means, let us say the

top plate is moving towards the right with a velocity u1 and the bottom plate is having zero

velocity. Okay?

So that means there is a relative velocity, so it does not matter whether this is moving towards

the right, left or whether the bottom plate is moving towards right or left. Important message

is that there is a relative motion between the two plates. So, two important things. One is a

narrow gap between the two plates. The other is there is a relative motion between the two

plates.

Now, many times when things are introduced through lectures often we do not ask ourselves

a question that why this situation? Why we are studying this problem? When Couette flow is

first  introduced  in  say  fluid  mechanics,  have  you  ever  thought  that  have  you  ever  seen

somebody cooling up late in a fluid. I have never seen. I do not know whether you have. I

mean, there are situations which are similar to this.

But exactly  this  situation where you have two parallel  plates separated by a narrow gap,

someone is cooling one plate relative to the other. I mean, this kind of scenario is not very

commonly seen, but then whey are we studying this. So, it is not that this kind of scenario is

absolutely not there in practice. I mean this kind of scenario is there but I want to mean is that

it  is  not  a  very common industrial  scenario  like  flow through a  pipe  is  a  very common

industrial scenario.

Like if you go to any process industry, power industry you will see that there are lots of

pipelines and fluid is flowing through a pipe. But in those industries, you will not see that

somebody is pulling a plate relative to the other within a fluid. So, what is the motivation. So,

I  would like  to  give you a motivation  behind this.  So,  I  will  give you one fundamental

scientific motivation and one practical engineering motivation.

And we will merge those motivations together to see that why such a flow is very important

in the context of fluid mechanics and heat transfer. Now as mechanical engineers you must be

familiar with bearings. Or at least you have heard of the term bearing. So, if you have a shaft,



at  least  you know what  is  a  shaft,  right?  So,  if  you have  a  shaft  which  is  rotating  and

transmitting power, now to support that shaft you require a bearing.

So, let us say this is a shaft which is rotating, say clockwise, anticlockwise whatever, with a

particular angular velocity. Now, this may be the rotor but this may be a stator just an outer

casing to support the shaft. Now we have actually magnified this figure. This gap is very

small.  But at  the same time this  gap is  finite.  Why this  gap is  finite  because during the

rotation of the shaft.

I mean, it will acquire certain eccentricity at certain times and there is always a tendency that

the shaft may be in contact with the bearing, then there will be metal to metal contact. So that

should be awarded. So in between to avoid that high friction through metal to metal contact a

lubricating oil is kept. See, this is practical engineering. You must understand this. Always,

the issue would be that, at the end in heat transfer.

We will  boil  down the situation  to mathematical  equations,  solution of the mathematical

equations and all, but we should case a model practical problem towards that direction not

that we are just as mathematicians interested to solve those problems arbitrarily. So, you have

oil here, separated by this gap. Now this gap is very small. When this gap is very small, then

what happens? Then effect of curvature of these two is not important. 

Effect of this curvature will be important when this gap is relatively large, but when the gap

is relatively small then the effect of curvature is not important. When the effect of curvature

is not important we can model this by almost like a flat surface, this by another flat surface

separated by, so if this distance is r2 minus r1 where r2 is the radius of the outer and r1 is the

radius of the inner.

Then  this  is  r2  minus  r1  and  the  inner  one  is  having  a  velocity  which  is  what  omega

multiplied  by r1,  where  omega is  the  angular  velocity.  So,  this  is  having a  translational

velocity omega multiplied by r1. The upper one is having no velocity and there is a narrow

gap. So, you can see that this problem which appears to be hypothetical is actually a very

practical engineering problem. 



One has to have the mindset towards understanding the problem in this way. Now this s of

course the practical  way of looking in to this  problem, but this  problem also has a  very

fundamental scientific insight because of which this problem needs to be studies carefully. So

far you have seen that, can you tell whether this an internal flow or an external flow? This is

an internal flow, because eventually these two plates form a channel. How is the flow driven?

When you have two plates in a channel or two plates forming a channel and there is a fluid

which is flowing between the two plates,  then how is the flow actuated? In the previous

examples we have seen that the flow is actuated by a driving pressure gradient, that is called

as a pressure gradient driven flow or pressure driven flow. Here there is not pressure gradient,

of course you can create a pressure gradient.

But we will consider a simple Couette flow when this pressure is P0 and this pressure is also

P0. That means there is no pressure gradient. But still there is a fluid flow in between the two

plates, how? This is driven by shear. So, this is a classical example of a shear driven flow. So

just like we have a classical  example of a pressure driven flow, this is a classical  model

problem of a shear driven flow.

And in many physical scenarios shear is a very important dominating mechanism. So, if shear

creates a flow, what is the signature of that flow that can be studied by this very simple

problem. So, one fundamental scientific motivation is studying shear driven flow. So, in any

practical scenarios starting from engineering to biological applications, wherever there is a

shear driven flow you can consider this model problem and start with that. 

On the other hand, as a mechanical engineer, the problem of lubrication in bearings is very

important and for such problems you can first start  with the fluid mechanics and then of

course heat transfer because, see, in one way this narrow gap, how this narrow gap manifest

in analysis of the problem? Of course, here we have discussed that if the gap is narrow then

this curvature effect may be neglected.

But that is not all because even if the curvature effect is not negligible you can analyze this

problem taking the curvature into account, that is not a very big thing. But the narrow gap

means, see, what is the velocity gradient? What is the order of magnitude of the velocity



gradient? Order of magnitude of the velocity gradient is u1 by H and if you recall the viscous

dissipation terms the viscous dissipation terms scale will square of the velocity gradients. 

So, your viscous dissipation term will scale with this. So, if this is small then this will be

large  and  then  viscous  dissipation  will  have  a  big  role  to  play.  So,  what  will  viscous

dissipation do? It will convert the viscous effects or the shear between the work done due to

shear between various fluid layers irreversibly into intermolecular form or energy or internal

energy that will rise the temperature. 

We have shown during our derivations that it will trivially rise the temperature. It is trial

heating and not cooling. So just like if you rub your palms you do not expect that your palms

will get cooler, right? You expect that these will become hotter. So, the same mechanism

works here. And when it becomes hotter than that means that will act like a heat source in

this oil. Okay.

And when there is a heat source in the oil, the oil temperature may rise and that might have

several  practical  consequences  in  the  performance  of  the  bearing.  So,  it  is  important  to

understand  that  what  is  the  temperature  distribution  within  the  system.  So  that  is  our

motivation.  So,  as  we  are  seeing  that  in  convection  when  we  are  interested  about  the

temperature distribution.

We first start with the fluid mechanics analysis because we need to get the velocity field and

we will use the velocity field to get the temperature field. So, we will consider this model

problem and we will  set up the coordinate  axis,  y axis like this. We will assume a fully

developed flow so that x dependence is not there. So, the momentum equation, so it is just

like flow in a parallel  plate  channel.  Only thing is  that  the flow actuation mechanism is

different.
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So, what is the governing differential equation? So, if you recall, for fully developed flow,

del u del x is equal to zero and if there is no penetration at the wall that is there are no holes

at the wall, you have v equal to zero also. So, left hand side, del u del x plus v del u del y that

term will be zero and because of steady flow the unsteady term will also be zero. So, total

acceleration is zero. 

So fully developed flow is a flow where all the forces are balanced, so that there is no net

acceleration in the flow. So therefore, you will have zero is equal to…So I will write dp dx

instead of del p del x, okay? This is the equation that we had when we were having pressure

driven flow through parallel plate channels, that equation is applicable here. So why I have

written, I have actually jumped one step. 

I mean here in the first step you write partial derivate and you write partial derivate because

this is a function of y only and because this is a function of x only, that means each equal to a

constant. So, I have jumped all those steps because we have already done that in the previous

examples. So, you have dp dx is equal to mu d two u d y two, is equal to a constant, right?

Now, what is dp dx? Because dp dx is a constant that means pressure versus x is linear. 

So, what is this? This is p at x is equal to L minus p at x equal to zero divided by L, that is dp

dx because dp dx is a constant, p versus x is linear, so dp dx is delta p by delta x, right? So,

what is this? This is P0 and this is also P0. This is called as simple Couette flow. But it is not

necessary that you have a Couette flow where the pressures at the inlet and the outlet are

always the same. If not, it is a combined Poiseuille and Couette flow. 



So, then you can solve this problem very easily by noting that this is a linear differential

equation, right? So, you can consider it as a super position of two problems. In problem one

you have  only  pressure  gradient  but  no  shear  driven flow.  In  problem two,  no  pressure

gradient and only shear driven flow and the combination of these two is the solution of the

problem.

But just to get the implication of pure shear driven flow we are considering that there is no

pressure gradient. So that means what is the value of c, c is equal to zero. So, u is equal to c1

y plus c2. 
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So, you apply the boundary condition at y is equal to zero, u equal to zero. That means c2 is

equal to zero and boundary condition two at y equal to H and u equal to u1. What boundary

condition is this?

This is no slip boundary condition, right? So, no slip does not mean zero velocity of the fluid.

No slip means zero relative tangential component of velocity between the fluid and the solid

boundary and that originates from viscous effects. So, at y equal to H u equal to u1, that

means u1 is equal to c1H, that means c1 is equal to u1 by H. So, the velocity profile is u

equal to u1y by H. So, what is du dy?

What is the rate of deformation of fluid in a plane like this, that is del v del x plus del u del y.

So here there is no v, so it is basically du dy. So, this is the rate of deformation. So, this is the



rate of shear. So, rate of deformation is u1 by H which is a constant, that means if somebody

prescribes a rate of deformation,  then you can use that rate of deformation to model this

problem because if the rate of deformation is given.

And the gap is given you can find out what is u1, so the rate of deformation the value is

given. If the value is given, given a particular gap you can find out what is u1. So, with that

boundary condition you can stimulate a practical situation where the flow is purely driven by

shear of a given magnitude, okay? So, this is the magnitude of that shear. So that is why this

is a pure shear driven flow. Now next what you will do. 

This is the fluid mechanics part of the problem, next we will analyze the heat transfer part of

the problem. So, let us say that this is isothermal T is equal to T0, is the bottom plate and T

equal to T1 is the top plate. And let us assume that T is a function of y only. Eventually if you

have long parallel plates, infinitely long and two plate, top and bottom plates are isothermal.

Then it will come to a situation where temperature ceases to be a function of x, if you have

such  infinitely  long  plate.  So  that  is  the  situation  that  we  are  studying.  See,  all  these

idealizations are there to simplify the mathematics and bring out the essential physics. So

always  in  mathematical  modeling,  good  physicist  what  they  do  is  that,  see,  the  actual

practical problem is very complex.

But what good physicist try to do is they try to simplify the problem to an extent that the

mathematics becomes simple enough to bring out the essential physics and that physics is

utilized for design and other analysis. So that is what we are attempting here.
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Now, for the heat transfer part of the problem we need to solve the energy equation. See, we

have considered the viscous dissipation term but we will analyze later on whether this term is

at all important or not. This term we have kept in the analysis because at least it  has the

potential of being important because H being small the square of this maybe large. So that

gives the motivation of keeping this term in the analysis. 

So, this phi is the viscous dissipation function which let me write the expression of this in an 
index notation. This we have derived earlier but let me just write it.


