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In  the  previous  lecture,  we  were  discussing  about  the  concept  of  hydrodynamically  and

thermally fully developed flow. We discussed about the consequences of hydrodynamic and

thermally fully developed flow in terms of expressing a non-dimensional temperature and a

non-dimensional velocity. Now, we have seen the term delta T delta x can be expressed in

terms of theta and d T m d x, where theta is T minus T wall by T m minus T wall.

(Refer Slide Time: 00:54)

So, for constant wall temperature it is theta into d T m d x and for constant wall heat flux, it is

just d T m d x without involving theta that much we discussed in the previous class. Now,

irrespective of the boundary condition, this parameter is always involved. So, one thing we

have  been  successful  in  reducing  the  dimensionality  of  the  problem  that  when  we  are

expressing delta T delta x in terms of d T m d x.

We  are  converting  like  a  2-dimensional  or  a  3-dimensional  problem  to  (())  (02:37) 1-

dimensional problem. But the question is how to calculate this d T m d x, so for that we will

make an overall energy balance.



(Refer Slide Time: 02:52)

So, let us say that this is the channel and we take a control volume like this. Across this

control volume, we are going to write an energy balance, so when we are going to write an

energy balance, there is some energy that is entering. Let us say that this length is d x. There

is some energy that is leaving, so what is the energy that is entering in terms of the bulk mean

temperature. 

The bulk mean temperature is an equivalent temperature which would have existed uniformly

across the cross section to make the flow of the same energy as that of the actual case. So, if

T m is the bulk mean temperature then what is the rate at which energy is transferred across

this section, it is m dot into H, m dot into H is m dot into C p into T m. We are considering

incompressible fluid and let us say this one is m dot C p T m plus d T m. 

Then, we have heat transfer at the wall, what is the heat transfer at the wall? If the wall heat

flux is q double prime this may be a constant or it may be a variable. Let us say that the wall

heat flux is q double prime. So, what is the heat transfer rate across the wall. Let us say this is

a circular pipe of radius r. So, if the wall heat flux is q double prime, what is the rate of heat

transfer? q double prime into 2 pi r d x, right. 2 pi r d x is the surface area of the pipe. 

So, 2 pi r d x is nothing but perimeter into d x. So, to generalize it for any section, we will

write it as q double prime into perimeter into d x. So, we can write for this control volume,

rate of energy in minus rate of energy out plus rate of energy generated.  So, this is zero

because it is steady flow and steady state. Rate of energy generation is zero that we are not



considering in this problem. If there is some rate of energy generation, we can accommodate

this in this formulation very easily.

Rate of energy in is m dot C p T m plus q double prime Pd x. What is the rate of energy out

m dot C p T m plus d T m. Now, this equation is not perfect, but it has an approximation. My

question  is  what  is  that  approximation  that  is  there  in  this  equation.  This  is  not  exactly

correct. "Professor - student conversation starts" Yes, no, no, no, it is not taken as constant.

"Professor - student conversation ends".

Even if it is a function of x it is true because we have taken a small element over which it will

be constant. Q double dash, this may be function of x. So, in the axial direction we have

considered that there is heat transfer due to fluid flow, but we have not considered that there

is heat transfer due to axial conduction. So, we have neglected axial conduction, so ideally,

we should have taken a heat flux minus K d T m d x here and minus K d T m d x at x plus d x

here. 

So, we had not taken any axial conduction. So, we have neglected axial conduction and that

is valid in many practical problems where advection is much more dominating than axial

conduction. So, this very importantly is valid neglecting axial conduction.

(Refer Slide Time: 09:33)

So now from this equation, you can write d T m d x is equal to q double dash P by m dot C p.

Now, can you tell from here that d T m d x is constant if wall heat flux is constant, yes or no,

yes. Because for steady flow rate is m dot is constant, we assume that the properties are



constant then the perimeter of the cross section, it is the constant for the geometry that we are

considering. So, if the wall heat flux is constant then the d T m d x is constant. 

So, we had earlier shown that for the constant wall heat flux, delta T delta x is equal to d T m

d x is equal to d T w d x is equal to constant, ok. But not for any general constant wall heat

flux. For constant wall heat flux and thermally fully developed flow, ok. So now, we come to

an inference that this is the constant for constant wall heat flux not just in the thermally fully

developed flow region, but about the entire region. 

Because  this  overall  energy balance  theory  is  very general  it  does  not  take  into  account

whether it is thermally fully developed or not. It is just the simple energy balance using the

definition of bulk mean temperature that is converting the multidimensional problem to 1

dimensional problem, but it does not take into account whether it is thermally fully developed

or not. So, the conclusion is that even if the flow is not thermally fully developed for constant

wall heat flux d T m d x is the constant, but this is still an approximation.

Because it has neglected axial conduction. If you do not neglect axial conduction that is not

true. Whereas this is exactly true, does not matter whether axial conduction is there or not,

ok. So, we can make a graph of say T versus x for constant wall heat flux. So, when we write

plot T versus x, we essentially want to plot basically T m and T wall because we are now

converting it to 1 dimensional problems where the functions of x are T m and T wall.

So, let us say that T wall is greater than T m now what is the graph of T m versus x, it will be

a straight line because d T m d x is a constant assuming that axial conduction is negligible it

is a single straight line throughout otherwise in the thermally developing region this may not

be a constant, so it may be a curve and then in the thermally fully developed region, it will be

a constant that formula. 

So, let us make as sketch of this is T m versus x assuming that the wall is heated, now what

will be the graph of T wall versus x assuming T wall is greater than T m. So first that graph

should be above this if it is heated then how will the graph look like, see d T wall d x is a

constant only if it is a thermally fully developed flow. So, let us say that the flow becomes

thermally fully developed from here. 



So, up to this it will  be a curve beyond this it will be a straight line.  What straight line,

straight line parallel to this because d T m d x is equal to d T wall d x. So, the slopes of these

2 straight lines are equal in the thermally fully developed region. So, this is T wall  as a

function of x, ok.

(Refer Slide Time: 16:00)

Now, this is the case of constant wall heat flux. Let us stud y the qualitative behavior of

constant wall temperature may be first we studied quantitatively and then we show it in a

plot. So, the case of constant wall temperature. So, d T m d x is equal to q double prime p by

M dot C p. How can you write q double prime in terms of the heat transfer coefficient h, q

double prime equal to what h, h into T m minus T w or T w minus T m. 

So, when you are considering q double prime, look at this figure, here the sign convention is

the heat transfer is from the wall to the fluid that means T wall minus T m, right. If it is the

opposite the sign itself will take care. So, in place of q double prime, we will take h into T

wall minus T m, so we can write d of T wall minus T m divided by T wall minus T m is equal

to minus p into h by m dot C p d x.

So, what we have done is, we have written d T m d x as T of d x of T m minus T wall

because T wall is a constant it does not matter whether we take it inside the derivative or not.

It will make no difference because d T wall d x is 0 for constant T wall, ok and then this

minus sign is observed because we have converted T m minus T wall to T wall minus T m. 



So, it is of the form (()) (18:21) it will be log of this, so Ln of T wall minus T m is equal to

minus p by m dot C p integral of h d x from x equal to 0 to x equal to L, where L is the total

length of the channel or the pipe. This of course we have to put a definite limit from x equal

to 0 to x equal to L. X equal to 0 is the starting and x equal to L is the ending of the channel.

(Refer Slide Time: 19:48)

So, we can write Ln of delta T L by delta T 0 where delta T is T wall minus T m is equal to,

so what is this, this is the average heat transfer coefficient times L. So, minus P into L into h

average by m dot C p. Now what is the total heat transfer rate, Q dot. Let us say you transfer

some heat from the wall to the fluid, so how can you measure what heat has been transferred

from the wall to the fluid. 

Let us say you are doing an experiment, so the situation is that you have some heat let us say

you have a heating coil at the wall, you have a heater at the wall, you are transferring heat to

the fluid. So how do you measure that what heat actually has been transferred to the fluid. So,

you can measure the thermal energy at the inlet and you can measure the thermal energy at

the outlet. So, the difference between these 2-thermal energy is the heat that is supplied from

the wall. 

So, you can say Q dot is nothing but m dot C p into T m at x equal to L minus T m at x equal

to 0, right. This is just simple energy balance. So, this heat transfer this is nothing but the

change in enthalpy. So, if you write the first law of thermodynamics for the control volume

this is what you will get as a heat transfer. There is no (()) (22:18) done in this case. So, all

the heat that is supplied is used to change this m dot C p into T that is m dot into h. 



Of course, we neglect the changes in kinetic energy and potential energy. So, you can write

these as m dot C p, see we can write this because this T wall is the constant so it is just

adding and subtracting the same constant from the 2 terms, but why we have done is because

this is the delta T at x equal to L and this is the delta T at x equal to 0. So, we can write m dot

C p is equal to Q dot minus Q dot by delta T L minus delta T 0.

So, you can substitute that here and write Ln of delta T L by delta T 0, perimeter into length

is what the total surface area, so this A is not cross-sectional area this is the surface area that

is 2 pi r into L for a circular pipe of length L. So, minus area into h then in place of M this

one you can write Q dot by delta T L minus delta T 0. So, Q dot is equal to A into h average

into delta T L minus delta T 0 by Ln of delta T L by delta T 0.

So, you can see that normally what is Q dot A into h into delta T, the temperature difference

between the 2 systems across which the heat transfer is taking place here one system is the

wall another is the fluid. So, it would have been ideally A into h into T wall minus T m, but it

is not A h into T wall minus T m. It is h into these, the reason is that T wall minus T m is not

a constant. It is continuously varying with x.

So, if you make a plot of say T wall so T versus x. So, for constant T wall, so this is constant

T wall. For constant T wall, what is T wall as the function of x, this is T wall constant. What

about the T m, see look at this equation d T m d x, so d of T wall minus T m by T wall minus

T m is this. So that means these T wall minus T m where is with e to the power minus x,

right. Because log of these varies with minus x so this T wall minus T m varies with e to the

power minus x. 

So, that means T m has an exponential variation with x. So, for constant wall temperature you

get  assuming that  the  wall  is  again  heated,  this  is  T  m as  the  function  of  x.  This  is  an

exponential curve. Why exponential curve you can look from the analytical expression. So, if

you want to say that the rate of heat transfer is equal to A into h into delta T. Now, the delta T

is different. Delta T at x equal to 0 is this, then it becomes this, it becomes this, it becomes

this, like this. 



So, delta T is continuously varying, so you require some equivalent average delta T. We have

shown here by your calculation that average delta T is not this delta T plus this delta T by 2,

not, it is these one delta T L by minus delta T 0 by Ln delta T L by delta T 0. This is called as

LMTD or logarithmic mean temperature difference.  so,  why do we require a logarithmic

mean  temperature  difference  because  the  temperature  difference  itself  is  continuously

varying. 

So, what would be the logarithmic mean temperature difference, if the temperature difference

is constant let us say that this T wall is the constant and T m is the constant, then what would

be  the  logarithmic  mean  temperature  difference  or  T  wall  like  this  T  m like  this.  This

difference is the constant. Then what would be the logarithmic mean temperature difference,

no.  The  logarithmic  mean  temperature  difference  physically  represents  the  equivalent

temperature difference.

So,  if  this  difference  is  a  constant  this  constant  value  itself  is  the  logarithmic  mean

temperature difference. See if or anything you can do it mathematically. How do you do it

mathematically, see if a constant temperature difference is there. Then, it is delta T L equal to

delta T 0. So, it is 0 by Ln 1, 0 by 0. You can use (()) (30:16) rule to find out what is the

logarithmic mean temperature difference.

But my question is why should we do that from physical understanding we understand that

the logarithmic mean temperature difference is the effective average temperature difference

between  the  2  fluids.  If  the  2  fluids  temperature  are  continuously  varying,  you have  to

judiciously use that formula, but if the temperature difference itself is the constant then the

logarithmic  mean  temperature  difference  will  be  that  constant  itself  because  it  is  the

equivalent temperature difference.

So, we can say that to summarize so sometimes in short form this is written as delta T LM,

logarithmic mean temperature difference, so this is just a short form of doing it, but it is the

very important parameter and in one of the latter chapters on heat exchange here, what we

learn which is a very important topic for practical engineering applications. This terminology

will come over and again. So please make a note this very important terminology.


