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Thermal Boundary Layer – I1

In  the  previous  lecture,  we  were  discussing  about  the  case  of  Prandtl  number  =  1for

hydrodynamic and thermal boundary layer over a flat plate. Now as we mention that, not all

cases are characterized by the Prandtl number valve of 1, so we will consider the other cases

of Prandtl number and or making order of magnitude analysis, we will consider some limiting

values of Prandtl number.
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Case  1,  Prandtl  number  much  less  than  1.  So,  if  you  want  to  draw  the  velocity  and

temperature profiles at a given location, Prandtl number much less than 1, always remember

that in force convection, Prandtl number has a meaning of delta y delta t. We will see that

these meaning may be disturbed, if you have natural convection. We will talk about that in

details when we discuss about natural convection.

But in force convection it will be having a meaning of delta y delta T. So Prandtl number

much less than 1 means, the hydrodynamic boundary layer thickness is much less than the

thermal boundary layer thickness. So that thermal boundary layer thickness may be say this

is, this one. We will be having temperature profiles like this. So we will try to make an order

of magnitude analysis of this.



So, let us write the equation, the thermal boundary layer equation. Remember one thing, we

always analyse hydrodynamic boundary layered equation within the hydrodynamic boundary

layer, similarly we always analyse the thermal boundary layered equation within the thermal

boundary layer. Because the domain of applicability of this equation is within the thermal

boundary layer.

So this equation, if we now apply within the thermal boundary layer, what is the order of

magnitude of these term? What is the order of magnitude of u? See, because delta T is much

greater than delta, so for almost over the entire delta t u is u infinity. Okay, so the maximum

valve of u is u infinity. This is of the order of; this v is what? v where? If you write order of

magnitude of these, this value of v is v at which location?

Yes, age of thermal boundary layer, not hydrodynamic boundary layer. Because this equation

has its domain in the thermal boundary layer. So this v, you write v at delta T, where v at

delta T is the velocity at the age of the thermal boundary layer not hydrodynamic boundary

layer * and these term as an order of magnitude of, now use the continuity equation to get v

delta T in terms of u infinity.
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What  is  the  order  of  magnitude  of  this?  This  equation  is  analysed  within  what?  Within

thermal boundary layer, because our objective is, you can analyse the continuity equation

both within thermal boundary layer as well as within hydrodynamic boundary layer. But you



have to  consider  the  objective.  What  is  the  objective  here?  The objective  here  is  to  get

velocity at the age of the thermal boundary layer.

Therefore, we are going to apply it across the thermal boundary layer. So, u infinity/delta,

sorry, L, this is of the order of v delta T / delta T. Because these 2 terms should be of the

same order of magnitude, we can write v delta T is of the order of u infinity * delta t/L. So

this is of the order of u infinity * delta T/L. So just like the momentum equation, we can see

that in the energy equation also, these 2 terms are exactly of the same order of magnitude.

So, although here there is v and v may be much less than u, del T/ del y over compensates

that as compared to del T/ del x. So you have to keep in mind that these 2 terms are of the

same order of the magnitude.  So these 2 terms together  represent physically  what? They

physically represent the advection effect, that is, the transfer of heat due to fluid flow. So and

the right hand side is the conduction.
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So at the age of the thermal boundary layer; that means we can write, so delta T square/L

square, we can write u infinity L/ alpha. So what is u infinity L/ alpha? This is u infinity L/nu

* nu/  alpha.  Right,  So Reynolds  number * Prandtl  number.  This  is  also called as Peclet

number. Now what does it physically represent? So, u infinity L/alpha, you can write it as u

infinity L/k rho, cp in the numerator, right.
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So, what is this? This is advection flux; this is conduction flux. In convection, what we are

always trying to see or explore that how is advection enhancing or augmenting the heat flux

with only conduction, there would have been some heat flux, with advection, how that can be

augmented, that is one of the big objectives of studying convection. So you can write delta T/

L is of the order of Reynolds number to the power of -1/2 x Prandtl number to the power of -

1/2.

Recall  that,  delta/L was of the order of Reynolds number to the power of -1/2.  This we

derived earlier. So delta/ delta T is of the order of Prandtl number to the power of 1/2. S as

we discussed that Prandtl number is the quality major of delta y delta T in force convection,

you can see that, that is justified. Now our objective again is not to calculate delta or delta T.
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But  our  objective  is  to  calculate  the  heat  flux  at  the  wall,  which  when  express  non

dimensionally  is  called  as  Nusselt  number.  So,  our  objective  is  to  calculate  the  Nusselt

number. So at the interface, that is, at this location, this is the y axis, we write; so we have

discussed about various issues with these equation, but let me try to iterate, because these are

important issues. Let me first ask a question; is this k of the solid or k of the fluid?

Yes, so what temperature gradient we consider here? So you have a solid, so let us say this is

Ts, this is T wall and then you have some temperature profile in the fluid. So, at the interface,

you must have -ks, right, at the interface, we must have these. Now we have to keep in mind

that in convection,  our important  consideration is temperature profile within the fluid not

temperature profile within the solid.

So, because we are interested about temperature of the fluid here, that is what we considered

here.  Therefore,  these  case  k  of  the  fluid,  but  had  we  be  interested  with  k  with  the

temperature profile in the solid, these could also be k of the solid. So, whether this is k of the

solid or k of the fluid, it depends on whether we are considering temperature profile in the

solid or temperature profile in the fluid.

In convection, we are interested about temperature profile in the fluid, therefore this k must

be k of the fluid and the other important assumption is that we are neglecting radiation. If you

do not neglect radiation, there will be an additional heat flux due to radiation. Okay, what

does it physically say? This is the very important physical law, what does it say? It physically

says that whatever is the heat flux due to conduction at the interface, the same is heat flux due

to convection.

So, that mean that, interface cannot store anything, so this is valid for both steady as well as

unsteady state. It is not just steady state, but also at unsteady state, because interface cannot

store any thermal energy, so this is the big difference between electrostatics and heat transfer.

In electrostatics,  interface can store charge, but in heat transfer interface cannot store any

thermal energy; any surface cannot store thermal energy, it can only transfer thermal energy.
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So now if you define, let us say you define theta is T-T wall/T infinity- T wall and let us say

non dimensional y is y/L. So you can see that non dimensional temperature gradient at the

wall is this non dimensional parameter, which is nothing but the Nusselt number. So Nusselt

number in a way represents the temperature gradient at the wall in a non-dimensional form,

that is what it does.

Now in this particular problem, let us write this –k del T /del y at y=0 or wall. So what is the

order of magnitude of this? k delta T/; what is the order of magnitude of this? So order of

magnitude  y,  these  2  must  be  the  same.  That  means,  k  delta  T/delta  T,  remember  in

convection, when we are writing k, its k of the fluid. So in this same definition, if it is k of

solid, that becomes the Biot number, which we used in conduction.
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So Nusselt number at a given x, the maximum value of x is x=L, but at any local x, that is =

hx/k. This is nothing but, h delta T/k * x/delta T. h delta T/k is of the order of 1 and x/ delta

T; you can see here, just think of L replaced by x, Reynolds number L will be replaced by x.

It will become local Reynolds number. So x/delta T will be Reynolds number to the power of

1/2 * Prandtl number to the power of 1/2.

So this is of the order of Reynolds number to the power of 1/2 * Prandtl number to the power

of /2. So, Nusselt number is of the order of Reynolds number to the power of 1/2 * Prandtl

number to the power of /2 or Peclet number to the power of 1/2. This is for Prandtl number

much less than 1. What kind of practical fluid will have Prandtl number much less than 1?

So  Prandtl  number  much  less  than  1  means,  the  thermal  diffusivity  is  much  more  as

compared to the kinematic viscosity and that is true for liquid metals. So, in steel industry or

any industry involving liquid metals, this kind of analysis is very important where if you have

a flow of liquid metals, you can safely assume that the Prandtl number is much less than 1. 
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We will consider the other limiting case before we stop today and that is Prandtl number

much greater than 1. So Prandtl number much greater than 1 means, delta much greater than

delta T. So if you draw the velocity and the temperature profiles, let us say this is delta and;

let us say this is delta T. So, remember that our domain of analysis, is this one for the thermal

boundary layer equation.



Now, what is the key difference between the previous case and this case? In the previous

case, at the age of the thermal boundary layer, we could consider u =u infinity, but now here

u  is  not=  u infinity;  u  is  this  one,  which  is  not  u  infinity.  So  if  you make an  order  of

magnitude analysis, let us call these as u at delta T. u at delta T is not u infinity; u infinity is

this one. 

(Refer Slide Time: 26:25)

So thermal boundary layer equation; what is this? this is v at delta T. Now we will use the

continuity equation. So this is of the order of; remember we are interested within the thermal

boundary layer. So u delta T/L, this is of the order of v delta T/delta T, that means v delta T is

of the order of u delta*delta T/L. Again, the same conclusion that these 2 terms are of the

same order.
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Now one important question is because we already do not what is u delta T? what is the way

in which we can estimate the order of magnitude of u delta T? See order of magnitude why

is? We can use the proportionality that u delta T/ u infinity is of the order of delta T / delta,

right.  This  much  divided  by  this  much=  this  length  divided  by  total  length,  order  of

magnitude wise, okay. 
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So we can write that advection is of the order of u delta T* delta T/L, that is of the order of u

infinity and conduction. So, we can write delta T cube /L cube, that means we are dividing

both sides by L square, so it is alpha delta/L square u infinity. Delta/L, what is delta/L, is of

the order of the Reynolds number to the power of -1/2. Delta y/l does not depend on Prandtl

number, so this is of the order of alpha/ u infinity L* Reynolds number to the power of -1/2.
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So delta T cube/L cube is of the order of; alpha/ u infinity L means u infinity L / nu, we put

the nu in the numerator * alpha/ nu, right* Reynolds number to the power of -1/2. So this is

what? This is Reynolds number. Yes, 1/Re and this is 1/ Prandtl number. So delta T/L is of

the order of Reynolds number to the power of -1/2 * Prandtl number to the power of -1/3,

right. 

Because this becomes Reynolds number to the power of -3/2, 1 cube root of that is, Reynolds

number to the power of -1/2, right.
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 So finally –k del T/ del y at y=0 = h*T wall- T infinity, so this is of the order of k*delta T/

delta T, this is of the order of h*delta T. So we can write k delta T/ delta T is of the order of h

delta T, that means h delta T/ k is of the order of 1. This is same as the previous case. So the

Nusselt number, that is hx/k= h delta T /k*x/delta T, which is of the order of 1. At x/delta T is

of the order of Reynolds number to the power of 1/2* Prandtl number to the power of 1/3. 

So Nusselt number in this case is of the order of Reynolds number to the power of 1/2*

Prandtl number to the power of 1/3. So, you can clearly see that the difference between the

limiting case of the Prandtl number much less than 1 and much greater than 1 is here the

Prandtl number dependence is -1/3 or 1/3 depending on which expression you are considering

and there it was 1/2.

But if you find out what is delta T/delta? Or delta/delta T, that will be related to the Prandtl

number. For Prandtl number much less than 1, delta T/ delta is sorry, delta/ delta T is of the



order of Prandtl number to the power of 1/2. For Prandtl number much greater than 1, delta y/

delta T is of the order of Prandtl number to the power or 1/3. So only the power dependence

gets changed, interestingly the Reynolds number dependence does not get change.

Because Reynolds number dependence followed from delta/x is of the order of Reynolds

number to the power of -1/2. That does not understand what is Prandtl number, so Reynolds

number dependence is the same but Prandtl number dependence in one case it is to the power

of 1/2, for Prandtl number much less than 1 and in another case to the power of 1/3 for

Prandtl number much greater than 1.

Typically, what are the fluids for which Prandtl number is much greater than 1, typically oils.

Because oils have very kinematic viscosity so, on one side Prandtl number much less than 1

is for molten metals on another side Prandtl number much greater than 1 is for oils. The case

closed to 1 will be valid for fluids like air, water, these type of fluids. We stop here today. we

will again continue in the next lecture. Thank You very much.


