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Example of application. We consider the example of first Thermal boundary layers over a flat

plate. So, first I will discuss about the problem qualitatively. Let us say that you have a fluid

coming from far steam with a velocity u infinity and temperature T infinity. And let us say

that the temperature of this wall is Tw which may be greater than T infinity or may be less

than T infinity. Tw equal to T infinity is not a case of our interest because then there will be

no heat transfer. 

Because heat transfer is triggered by the temperature difference so we assume that T wall is

not equal to T infinity as an example let us T wall greater then T infinity example. You can

consider even the other example. Now as we have seen in fluid mechanics that there is a

hydrodynamic boundary layer which grows because of viscous interactions. So, this is like 99

percent of u infinity and this thickness is delta which is a function of x. 

This much we have understood while discussing about the hydrodynamic boundary layer.

Now what about the heat transfer? Let us try to draw a separate sketch for discussing what

happens for the heat transfer. Let us try to draw a separate sketch for discussing what happens

for the heat transfer. So, let us draw the plate 
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Consider a section here temperature is T wall, right. If you go further away from the wall

little bit away the temperature is less than T wall so something like this. In this way, there

will be a distance from the wall at which the temperature will almost come to T infinity,

right. Is it 99 percent of T infinity? Will the temperature of the fluid become 99 percent of T

infinity? Which here is more, temperature of the fluid or T infinity? I mean what is the lowest

temperature of the fluid in other words? 

The lowest temperature of the fluid is T infinity so temperature at any other location in the

fluid has to be greater than T infinity for affective heat transfer from the wall to the fluid. So,

the temperature where it assymtotically attains the value close to the T infinity is not 99% if

the infinity but if you take as one percent gap one point zero one of T infinity, right. So, let us

say this is one point zero one, T infinity. For all practical purposes, this is as good as T

infinity. 

Now, just like the velocity profile you can also plot the temperature profile. One important

caution that in velocity profile we give vectors arrows, in temperature profile, please do not

give vectors. Because I mean all of us understand that temperature is scalar and not a vector.

So, do not give arrows just draw simple lines with arrow. So, this distance from the wall at

which the temperature attains practically infinity this distance is called as thermal boundary

layer thickness. 

Just like the velocity where it attains practically infinity that distance from the wall is called a



hydrodynamic boundary layer thickness. This is called as thermal boundary layer thickness.

So now you have two boundary layers. In fluid mechanics, we have just one boundary layers

so we talk about boundary layer. In heat transfer we have hydrodynamic boundary layer and

thermal boundary layer. So, we have to distinguish these two by using these two different

terminologies. 

The boundary layer in fluid mechanics what we discussed from now onwards we will say

hydrodynamic boundary layer and the heat transfer boundary layer is the thermal boundary

layer.  So, delta t which is the function of x is thermal boundary layer thickness. So, this

thermal boundary layer as usual grows. So, the delta T, here is this one and this line is the age

of the thermal boundary layer. Now I will ask you the very elementary and basic question

that should first come to our mind. 

What is the relationship between the thermal boundary layer thickness and the hydrodynamic

boundary layer thickness that means can be say at least whether delta T is greater than delta,

equal to delta, or less than delta at a given x. How can we say? What is the scientific bases

from which we can talk about that? So, you understand that delta will depend on what? We

have discussed it earlier. 

Delta depends primarily for a given velocity field. Delta depends on which property of the

fluid?  Kinematic  viscosity  of  the  fluid.  So,  delta  depends on  nu.  Similarly,  delta  T will

depend on what? Alpha, the thermal diffusivity because more the thermal diffusivity greater

will be the distance from the wall up to which the heating or cooling effect of the wall will be

propagated. So just like Kinematic viscosity is a messenger of momentum disturbance in the

fluid.

Thermal diffusivity is the messenger of the thermal disturbance within the fluid. So, if you

have the thermal diffusivity that is k/rho C pk denotes the strength of conduction and rho Cp

is the thermal inertia. So, it talks about the storage. So, conduction relative to the storage that

ability is dictated by the thermal diffusivity so thermal diffusivity in many ways is analogous

to the kinematic viscosity. 

So, delta will scale with nu I mean it will be related to nu and delta T will be related to alpha.

So, delta/  delta T should be related to nu/ alpha,  these two have same dimensions meter



square per second, as unit. So, this is a non-dimensional number called Prandtl number. So

clearly depending on different values of Prandtl number it is possible that delta T may be

greater than delta. Delta T may be equal to delta or delta T may be less than delta for Prandtl

number equal to one delta T and delta are identical. 

For Prandtl number less than one, delta less than delta T and for Prandtl number greater than

one delta greater then delta T. So, with this little bit of qualitative understanding we will now

derive the thermal boundary layer equations.
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Thermal  boundary  layer  equation  over  a  flat  plate.  So,  we  will  assume  steady  flow,

incompressible flow. So, for incompressible flow the last term is not important in the energy

equation, steady flow of course will mean that in the left-hand side the time derivative term

will be zero. We are neglecting any volumetric heat generation and we are neglecting the

viscous dissipation. 

We will separately talk about certain problems let on where viscous dissipation is important

normally for flow over a flat plate with open ambiance the viscous dissipation will not be

important. Because viscous dissipation depends on square of the velocity of gradient so if the

velocity gradient is very large then that will be important. So, in very small confinements if a

fluid is constrained then viscous dissipation may be important. 

So, we will talk about some such examples in this course but for flow over a flat plate we will

assume that in general viscous dissipation may not be important. So, with this we will write



this  equation  in  the  boundary  layer  co-ordinate.  The  boundary  layer  coordinates  x,  y

coordinates  we  have  discussed  that  what  is  a  boundary  layer  coordinate.  So,  with  the

boundary layer coordinates so the left-hand side this term is zero because it is steady flow. 

This terms becomes u delta T/ delta x plus v delta x plus v delta T/ delta y. Now, to proceed

further we need to make a simplification and the simplification that we will make is that k is a

constant. See we are not bothered about rho Cp are constants or not because anyway that is

coming out of the derivatives but to bring k out of the derivatives we have to assume that k is

a constant. So, we will make another assumption that k is constant. 

That is thermal conductivity of fluid is constant. So, if you do that and then divide this k by

rho Cp you will get the alpha in the right-hand side. So, your equation will become now this

equation we can say that it is an energy equation for heat transfer for flow over a flat plate.

But  in  terms  of  boundary  layer  consideration,  the  boundary  layer  consideration  for

hydrodynamic boundary layer what was the important consideration. Delta much, much less

than x. 

Here we will assume for thermal boundary layer theory that delta t much, much less than x. 
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So, now what is the order of magnitude of this term? Yes. This is delta, delta x of delta T/

delta  x  that  means  some  characteristic  temperature  difference  by  some  square  of

characteristic length. What is the characteristic temperature difference? T1 minus T infinity

we will call it in a short notation, delta capita T where delta T is T1 minus T infinity divided



by L square. And so x characteristic is L for flow over a flat plate and this is what? 

So out of these two-which one is  more,  clearly this  is  the dominating  term.  So, we will

neglect this as compared to this so that gives rise to the thermal boundary layer equation. So,

let us summarize the hydrodynamic and thermal boundary layer equations for flow over a flat

plate before we solve these equations together. 
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Remember,  that  our  philosophy in forced convection  is  that  the velocity  field  is  already

known we will  use that  velocity  field  to  obtain  the  temperature  field.  So,  the  difference

between the boundary layer momentum and energy equation is that this equation is what

linear or none linear partial differential equation? It is none linear partial equation because of

these terms u delta u/ delta x like that. But the energy equation is linear in T.

Because u is a separate function which you can get from the momentum equation solutions.

So, once you get u then its linear in T. So, you can solve further temperature. Now it is very

tempting to look into the similarity of these two equations because you see as if u is replaced

by T and nu is replaced alpha. So, if you consider a situation if nu is equal to alpha that is

Prandtl number is equal to one. then what happens? 

If Prandtl number equal to one these two equations are the same basically same form. So, the

question  is  will  the  solution  be  same so  this  is  what  Reynolds  was  thinking  about.  See

Reynolds was a very cleaver scientist, mathematician whatever you call. Reynolds did a lot of

work in fluid mechanics and his first thought was that how will I solve the energy equation.



So, one possibility is that can I solve the energy equation without solving it? 

It appears to be a time of paradox that how can you solve an equation without solving it. So,

the possibility is that can I look into the analogy between these two equations and then using

that analogy from the solution of these, we can directly tell  what is they solution of this

without solving this equation. And when Reynolds attempted that, that led to a very famous

derivation in heat transfer which we will do now is known as Reynold’s analogy. 

Now, question is when you have the Reynolds analogy you also have to make sure that these

equations are analogous not just in terms of equations but also boundary conditions. So, what

are the boundary conditions? So, this is the flat plate. This is the y axis at y equal to zero what

is the boundary condition? U equal to and t equal to T wall and the other boundary condition

at y tends to infinity, u tends to u infinity and T tends to T infinity. 

So, see all though for Prandtl number equal to one the equations are same but the boundary

conditions they do not look the same. For example, it is a homogeneous boundary condition.

It  is  a  non-  homogenous  boundary  condition  and these  values  are  different.  So,  can  we

convert these equations in such a way that not only the equations look similar the boundary

conditions will also be the same. 

The answer is very simple you renormalize the variables that is you define the new variable.  
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Always remember one thing I mean these are intuitive things but sometimes we do not give a



thought to it. When you define none, dimensional temperature do not define d by d infinity

like  this  because  is  the  temperature  difference  that  drives  the  heat  transfer  and  not  the

absolute temperature itself. So, non-dimensional temperature are normally defined based on

the ration of temperature differences and not temperatures. 

So, non-dimensional velocity u/ u infinity but none dimensional temperature not T/ D infinity

because it is the difference in temperature that drives the heat transfer. So now the boundary

condition at y equal to zero, u bar equal to zero and theta equal to zero and y tends to infinity,

u bar equal to one, and theta equal to one. And if cast that equation this is a very small

exercise but I will leave it on you. You can just show that this equation will boil down to u

bar delta u bar / delta x. 

So, what you can do is you can change the variables from u so you also define v bar is equal

to v/u infinity. So, you change the variables from u v to u bar, v bar and from d to theta by

using this definition in that equation you will get equations again in the same form very little

algebra. Nothing is there to show this even by observation you can say. So then now we are

in a position that the governing equations and the boundary conditions are exactly the same. 

What are the variables? Variables are u bar and theta. So, we can say that since governing

differential equation and boundary conditions are same in form for u bar and theta we can

conclude that u bar equal to theta. This is something which is not very intuitive because this

either  solution  of  a  nonlinear  equation  this  is  a  solution  of  a  linear  equation  so  some

mathematical insight should get into that we will not be too much bothered about that but we

will see what the consequence of this.
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Is u/ u infinity equal to T minus T wall. Again, I am repeating that as an engineer we are not

so much bothered about what is a temperature? What is the velocity? In fluid mechanics,

what is the most important parameter the wall sheer stress that we are bothered about. And in

heat transfer what is the most important parameter wall heat flux. So, wall sheer stress in

fluid mechanics and wall heat flux in heat transfer.

And you can see that both will follow one from the other by differentiating this with respect

to y at y equal to zero. So, we will differentiate both with respect to y at y equal to zero. So,

what is this? This is tau w/ mu. And what is this? Minus wall hit plus by k. Q equal to minus

k delta T/ delta y. So, 1/mu u infinity tau w. 
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Now, tau w we can write in terms of skin friction coefficient, CF. So, tau w is equal to CF



into half rho u infinity square. And wall heat flux? H into T w minus T infinity where h is the

convective heat transfer coefficient. So, we can write one u infinity will cancel here Cf/2. So,

we can multiply both numerator and denominator by L so what does it become? What is this?

Nusselt number based on the length L and what is this 1/ Reynolds number. 

For this particular problem, we can also write this as Nusselt number/ Reynolds number into

Prandtl number. Why? Because we assume Prandtl number equal to one then only these two

equations are the same nu are alpha are the same or Prandtl number equal to one. So, this is

actually equal to one. Why we are doing this is because Nusselt number/ Reynolds number

into Prandtl number has a very interesting physical interpretation. What is that? 

Prandtl number is mu Cp/k. So, mu get canceled and k get canceled. What is this? You just

multiply both numerator and denominator by delta T you will get a physical meaning. What

is this? This is convection heat flux and this is axial advection. This is heat transfer due to

fluid flow along x direction. So, this you can say that convection flux by axial advection plus.

Because these are all none dimensional numbers this ration is also a non-dimensional ratio

which is called Stanton number.

So, we can write that Stanton number equal to Cf/ 2 this is called as Reynolds analogy. The

beauty of this analogy is that for fluid mechanics if you can find out what is Cf then you can

say what  is  the corresponding heat  transfer  parameter  without  solving  anything.  But  this

being a very beautiful and simplistic expression there are major assumptions associated with

that. So, what are the major assumptions associated with this Reynolds analogy?

The most important assumption is first of all there is no pressure gradient. That means it

flows over a flat plate if there is a pressure gradient then you will have an extra pressure

gradient term in the momentum equation then there will be no analogy of the momentum and

the energy equation, right. So, there is no pressure gradient that means flow over a flat plate

and then Prandtl number must be equal to one. 

So Prandtl number equal to one, delta p/ delta x equal to zero, these two must be satisfied. So,

this Reynold analogy is very nice but it can be applied only with Prandtl number equal to one

in addition to the assumptions that we have considered. So, the situation is that when Prandtl

number is not equal to one what happens? We will discuss about that in the next lecture.



Thank you. 


