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So, this what does it indicate, this is rate of volumetric strain so it is clear from here that this

term, which is put in the square bracket represents the rate of volumetric strain. For what kind

of  situation,  you do not  have  any change in  volume of  fluid  element,  when the  flow is

incompressible.

Remember  there  is  a  very  important  distinction  between  incompressible  fluid  and

incompressible flow. Incompressible fluid is a fluid where or rather a compressible fluid is a

fluid where density is a significant function of pressure, whereas when we were talking about

incompressible  flow, incompressible  flow means there is  no change in volume of a fluid

element.

So, it is purely a kinematic parameter whereas when you are talking about incompressible

fluid you are trying to see whether density is a strong function of pressure or not. If density of

the fluid is a strong function of pressure it is compressible, otherwise it is incompressible



fluid. On the other hand, incompressible flow means there is no change in volume of a fluid

element. So incompressible flow is a kinematic parameter, it is a kinematic constant, right. 

We have to keep this in mind. So, this if it is incompressible flow, this term must be zero for

incompressible  flow. So, this  does not follow from conservation of mass, right. We have

shown that  this  follows from pure kinematic  constraints.  So many times,  there are  many

misunderstandings, one misunderstanding is that divergence of velocity, which is the term in

the square bracket is zero, which follows from the conservation of mass from incompressible

flow.

It  is  not  true,  it  is  following purely  from kinematic  constraints.  We can relate  that  with

conservation of mass in some way or the other by coupling that with the continuity equation

that is fine. But fundamentally it has nothing to do with the conservation of mass. It has

something to  do with change in volume of a  fluid element,  which is  a  purely kinematic

parameter. 

Now if this is zero for incompressible flow, then these also must be zero for incompressible

flow, because sum total has to be zero, zero for incompressible flow, right, because sum total

has to be zero. So, if the term in the square box is zero this curly term should also be zero.
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So, what can we tell from this, see there are some many misunderstandings propagated by

standard books, even very good books. And one of the misunderstandings is that, in books it

is  written  assuming incompressible  flow we take  density  as  constant.  This  is  completely



wrong, you can see from here that for incompressible flow this term has to be zero, that does

not means that density has to be constant.

I will you an example, when density is not a constant but still it is incompressible flow, I will

give you an example, but first you can appreciate mathematically. That this equal to zero has

to be true for incompressible flow that does not mean that rho has to be constant. But it is true

that rho is equal to constant is a special case of this, because if rho is equal to constant this is

trivially satisfied, right. 

So, rho is equal to constant is a special type of incompressible flow, so that is a constant

density incompressible flow. But you can also have variable density incompressible flow. So,

let us take an example.
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Let us say that you have a domain in which some solid phase is converted into liquid phase,

right. Let us say that it is some metal where the solid metal when is converted into liquid it is

expanding. So, when it is converted into liquid and it is expanding and this is the control

volume  what  will  happen,  first  this  volume  could  accommodate  the  solid.  When  it  is

expanding to become liquid this volume cannot accommodate that much of liquid. 

So, liquid will flow from different boundaries, okay. Because it cannot be adjusted with in

this volume, so what it should do, it should escape from the volume, okay. So, what does it

means, it means that see look at this term, del rho/del T, what is this, this is rate of change of



density at a given location due to change in time. You have what del rho/del T, because at a

given instant of time with in the control volume.

The solid has changed to liquid, which are of different density. So, you have this term, then

you have this flow terms u del rho/del x, v del rho del y, and w del rho del z. These are

advective components of the change in density. So, it says that for incompressible flow the

sum total has to be zero, but this is possibly balanced by these two, these three terms. If this is

plus this is minus so that, if this is plus A this is minus A so that sum total is zero. 

So here neither of solid nor of liquid can be thought of as compressible phases, right. These

are the normally incompressible phases. But here you have a density change. So, it is possible

that you have incompressible flow, but with variable density. So, we should keep in mind that

we should not  have the  prejudice  that  incompressible  flow means  constant  density  flow.

Incompressible flow may also mean variable density flow.

But a special case of incompressible flow is constant density flow. Finally, we will give a

mathematical perspective to this constant.
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So,  if  you write  this  particular  term in  short  hand notation  you can  write  that  the  total

derivative this is the total derivative, right, you in your earlier course on fluid mechanics you

have learnt that total derivative of velocity is acceleration, right. In place of rho if you write u

then that is acceleration along x, right. So, this is just D/Dt operator operating along rho, this

is the unsteady component.



And this is the advective component and the component due to flow, okay. So, sum total of

these two is zero for incompressible flow. So, we have discussed about conservation of mass,

next we will discuss about conservation of momentum. 
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So, we will start with the Reynolds transport theorem, so if you recall this N is the extensive

property of the system, n is N per unit mass, and Vr is the velocity of the fluid relative to the

control volume, and eta is the unit vector outward normal to the control surface. So, for linear

momentum conservation N is what MV, right, or you can write integrate of dmV, because

every mass of the fluid element may have a different velocity.

But  loosely MV is  fine,  I  mean,  because  I  mean there  are  many things  which  we write

rigorously, there are many things which we do not write very rigorously, still it is okay if we

mean there are same kind of thing and as I said go ahead with the conceptual understanding.

So, this means that what is small n, V, so you can see that this becomes a vector equation,

because this V will have its own components. 

So,  let  us  write  the  different  components  of  the  vector  equation.  So,  let  us  write  the  x

component, now we will make the two important assumptions that we made for working out

the details  of  the continuity  equation,  that  stationary  control  volume and non-deformable

control volume.
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So non-deformable control volume means we can take this derivative within the integral,

because volume is not a function of time, and stationary control volume means V relative and

V at the same. Not only that, what is the left-hand side, this is the, see this is why we apply

the Reynolds transport theorem. For this, you can directly apply the Newton’s second law,

but not for this term, because this refers to a control mass system, this is rate change of linear

momentum of the system.

So, this is the resultant force along x acting on the system. And because while deriving the

Reynolds  transport  theorem we have taken a  limit  as  delta  T tends  to  zero.  The control

volume almost coincides with the system. Therefore, the force on the system and force on the

control volume are the same. So, this is resultant force acting on the control volume. 

So, we can write resultant force along x on the control volume is equal to, so this term you

can use the Divergence theorem, to convert the area integral to the volume integral. So, this

will be integral of Divergence theorem, by Divergence theorem. So right hand side we have

been able to express all the terms in terms of volume integral, left hand side also we will be

attempting to do so. 

So, the first important conceptual thing to understand is how to represent forces in terms of

different integrals. So, forces in continual mechanics when we say continual mechanics, it

can be mechanics of solid or mechanics of fluid whatever. You will have two types of forces.
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One is surface force another is body force. By the name it is clear that surface force will act

on the surface element, and volume body force will act on the volume elements. So, we will

define something called as traction vector. So, what is a traction vector, let us say that you

have an element like this may be a solid or it may be a fluid whatever. Now you take a small

volume out from it. 

So, if you take a small volume you have to represent the force exerted by the remaining part

of the volume on this one. This is just like drawing a free body diagram, if you isolate one

part of the system, then you have to show all the forces exerted by the other parts on that part.

That is the concept of a free body diagram. So, this is just like a free body diagram, let us say

you have isolated this part and you are interested to draw the free body diagram of that. 

So, if you do that, let us say that T is a force per unit area, at the given point.
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This is a force. This is not actually any external applied force. This force is because of the

interaction between the shaded volume with the remaining part of the volume. This is like

action reaction type of force, okay. Now, this is not the total force. This force per unit area,

okay. So, if this is force per unit area that means the total force will be dependent on the area

that is chosen here. Let us say, you choose an area. 

If you choose an area dA, it may be a differential force dT whatever. Now, this differential

force dT will depend also on the orientation of this area, right. Because at a given point, if

you choose the same area, but with different orientation, you will get different force. So, this

force at a given point does not only depend on the location of the point, but also on the

orientation of the area chosen to calculate the force. 

To specify that,  you use a superscript eta with T. This eta is a unit vector normal to the

surface dA, okay. So basically,  this is a vector because it  has its  components,  but it  is a

special type of vector where it is actually something more general than a vector in a sense

that it also depends on orientation of the area to calculate the force. So, you can write the

traction vector using this notation, but in reality,  it  is very difficult to deal with surfaces,

which are arbitrarily oriented. 

So, to systematize the entire behaviour we intend to take surfaces, which are either having

normal along x or normal along y, or normal along z. So, we consider those surfaces, then we

can represent  the  behaviour  of  any arbitrary  surface  as  a  function  of  the  force  on those



surfaces. That we will show later on. But we will first take an example. Let us say this is x

axis. From now onwards, we will try the patient use a notation,  which is called as index

notation. 

So, in index notation we will write x axis as x1, y axis as x2 and z axis as x3. So, we will use

one index i, xi, i = 1 means x axis, i = 2 means y axis, i = 3 means z axis, okay. So now this

has how many surfaces. This volume, this has six surfaces. The speciality of these surfaces is

that their normals are either along x or along y, or along z. So, for this surface, this traction

vector is alternatively replaced by a notation of tau-ij. 

It is represented by a notation tau-ij, what does this i indicate, I will write it separately, tau ij.
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Very important in terms of the notation tau-ij. It is again force per unit area, what. So just like

traction vector or traction vector on special surfaces, which are normal either along x or along

y or along z, so this i represents the direction normal to the surface and j represents direction

of the force. So, you can see that this tau-ij, which are called as components of the stress

tensor, is not a vector. 

This is the first thing that we understand. So, this is something a little bit more general than a

vector. Why this is more general than a vector? A vector for its specification requires how

many indices? It requires one index for its specification. Let us say a force f. if you write a

force  f,  if  you write  f  with  subscript  i,  then  i  =  1  means  x  component,  i  =  2  means  y

component, i = 3 means z component. 



But here you require two indices for its specification, why? Because it acts like a vector in a

sense that  it  has its own components,  but this  individual  components also depend on the

orientation of the area chosen to calculate the force. So, direction normal to the surface that

appears  as another index.  So, it  requires  two indices  for its  specification  that  makes it  a

second order tensor.

So, it is very difficult to define at this level what is a tensor and I do not want to get into that

abstract mathematical discussions here. It is not very important, but we have to understand

that at least the tensor is something which is somewhat more general than a vector. So, but

vector is a special type of tensor. So, this example tau-ij, this is called as second order tensor

because it requires two indices for its specification.

A vector requires one index for its specification so vector is a first order tensor. A scalar

requires no index for its specification. So, scalar is a zeroic order tensor. So, in this way you

can also have higher and higher order tensors. In the equations that we are deriving, we will

come across another tensor, which is a fourth order tensor, which require four indices for its

specification, but we will discuss it at an appropriate time. 

But I mean just you will be having two indices does not mean that it is a second order tensor,

so there are several other properties, a second order tensor maps a vector on to a vector and

we will show that how this maps a vector on to a vector.
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Now, what we will do is we will try to draw the various components of the stress tensor on

this element, so let us take this surface. I will just write tau, you have to tell what will be the

indices.  What will  be the first  index, first  index is normal to the surface,  which is under

consideration. This surface has normal in what direction? 1, x1 right, so the first index is 1,

okay. The second index is what? 

 The second index is the direction in which this force is acting, so what is that? That is also 1,

so this  is tau-11. In books, correspondingly it  is also sometimes.  You can see this is the

normal component  of stress,  so in books,  sometimes to write  it  as normal  component  of

stress, it is sigma-11, or because 11 is repeating sigma-1 or sigma-x or sigma-xx. These are

different notations used in different books, okay. Then think about this. 

This is tau12, direction normal to the surface is 1 and direction of the force is 2. Similarly,

this is tau13, right. So, let us now consider this surface. There is a sine convention that if the

outward normal of the surface is along a positive direction, then the force will also be shown

in the positive direction. Otherwise if the outward normal of the surface is in the negative

direction, we will show the force in a negative direction. 

So here the outward normal to the surface is negative direction, so we will show the force in

the negative direction, so this is tau11, this is tau12 and this is tau13. Similarly, for other four

surfaces, you can write these things, I do not want to make this figure clumsy by doing the

same thing. I mean these two examples should be good enough and you should practice to

draw these or represent these forces in other four surfaces also.

So that you get a good grasp on this representation. Now, this is so far so good, so this tau-i is

a notation we can use for those surfaces, which have normal either along x, or along y, or

along z, but in reality, any surface, any arbitrary surface will not have normal along x, or

along y, or along z, so how will we represent that.
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So, to understand that this is the traction on any arbitrary surface, arbitrary oriented surface

rather. So, let us that we have a volume taken, which is like this. How many surfaces does

this volume have? Four surfaces. Can you tell that why have we chosen this type of surface?

So, in this volume, there are three surfaces, which have normals along x1, x2, and x3, but the

fourth one is not. 

The surface ABC is having arbitrary orientation and the other surfaces have orientation with

normal along x1, x2, x3, so for other surfaces, we can represent it by the tau-ij notation, but

not the surface ABC and by writing equation of the equilibrium for the entire volume, we will

be able to represent the force on an arbitrarily oriented surface in terms of the force on the

other surfaces.

That is the motivation of taking these type of element. So, let us try to represent the force

along x. Let us try to represent the force along x. So, for this surface, OAB let us say that the

surface OAB is ds1. What is the force on this? First of all, how do we represent it? What is

the direction normal to this surface? Negative of x1, right. So, the force along x1 will be

shown along negative of x1 by sine convention, so this is tau11, right. 

First one is direction normal and second one is it is the action of the force into this is per unit

area, so tau11 into ds1. Let us say that we consider OBC as ds2. This is the surface OBC, so

what is its outward normal, negative of x2. Negative of x2 is its outward normal. So, the



force along x1, this is along negative x1. This is tau21 ds2, but along negative x1. The third

say OAC, let us say the area is ds3. 

So similarly, for this also the force is tau31 ds3. Let us say the ABC is ds and ABC let us say

as outward unit normal vector of eta.
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Let us write the equation of motion for this element, so we can write resultant force along x is

equal to the mass, let us say delta m is the mass times acceleration along x. So, what is the

resultant  force  along  x.  Minus  tau11ds1,  minus  because  it  is  along  negative  x,  minus

tau21ds2, minus tau31ds3, so these three surfaces we have represented. The fourth surface

ABC, how will we represent that. 

How will we represent the force on ABC, we will use the traction vector notation because it

is an arbitrarily oriented surface. So plus, T with subscript 1 because this is the component of

the force and eta superscript, which is the direction normal into ds, ds is the area of ABC.

This is the surface force, then there is also a force, which is a volumetric force on a body

force. 


