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Transient Conduction: Infinite Slab

In the previous class, we were discussing about the Lambda parameter approach of solving

the unsteady state heat conduction problems. Now the Lambda approach, essentially neglects

the special variation of temperature within the system. But there are certain problems where

the special variation of temperature within the system is important and there you have to

solve the temperature distribution as a combined function of position and time not just time

but also a function of position and time. 

So,  we  will  discuss  about  such  problems  today.   So,  we  will  discuss  about  first,  one

dimensional unsteady state heat conduction. 
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Now, it is a general broad topic and we will try to understand this particular issue with the

help of some problems. So, we will first consider one problem of something called Infinite

slab. So, what is this? Let us say we have slab which has a thickness of 2L and the direction

in which it has a thickness of 2L is x direction. The other directions like these directions and

the direction perpendicular to the plane of the figure are infinitely large. 

Because  they  are infinitely  large  the  gradients  along those directions  are  very small  and



therefore the corresponding second order derivative terms are neglected in the corresponding

heat conduction equation. So, if we do that we will come up with the simplified equation. But

because we are working with a problem let us keep the boundary conditions and then we will

solve the problem. So, let us say that the temperature here is T equal to T zero. 

We will first work out, a problem when both the temperatures are same. If the temperatures

are different, I will not work out that problem. But I will give you some idea that based on

what consideration you can solve the problem even if the temperatures are not the same. But

to begin with let us consider that these two temperatures are equal which is T equal to T zero.

So, considering that all the thermophysical properties are constant. 

So, let us first write the energy equation, plus let us say we put a term for heat generation

Now, let us try to see that which term of these equations are negligible as compared to the

other terms let us look into that. 
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So, this slab is much wider and much longer in height as compared to the thickness. So, the

gradients along y and z directions are neglected. This is also neglected. If these are neglected

and also, we don’t have any heat generation so this term is zero. Then how do we solve this

problem? We solve this problem, by considering that Kx is a constant. If Kx is a variable it is

not so easy to solve it analytically. This is our governing differential equation. 

See, there is a very interesting thing when we solve this problem we say that we are assuming

all thermophysical properties as constant. But you can see that actually taking K as constant



is good enough it does not matter whether Rho CP are constant or whatever because anyway

Rho CP come out of the derivative, right. So, Rho CP or for a sold CP become C Rho into C

comes out the derivative not because Rho and C are constant.

But because of some other simplifications which we have already taken care of when we

drive the energy equation. So, equation has the assumption that K is constant but it does not

have an assumption that Rho C is constants, right. So, this is very illusive because Rho C out

of the derivative may create an illusion that as if Rho and C are constants but these are not

constants. So, this is the governing differential equation. 

Now, this is a time dependent problem. So, this kind of problem in the theory of differential

equation, are called as initial boundary value problems. So, you require initial conditions to

specify that at time equal to zero what is the situation? So initial condition, at t equal to zero,

temperature is  equal  to T i  for all  x.  This is  let  us say initial  temperature  and boundary

condition. 

Now, you can play a little bit of trick by reducing the size of the domain you can see that this

problem is symmetrical on this side on this end whatever is the temperature at this end also

the same temperature is there. So, it is symmetrical with respect to the central axis. So, also

when we say symmetry we have to  keep in  mind that  we are taking about  symmetry in

geometry and symmetry in boundary condition. 

So here we have both symmetry in geometry and symmetry in boundary condition. So now

because of symmetry you can solve half of the domain. Let us put, the origin here as x equal

to zero whatever is the solution that we get for half of the domain the remaining this half will

be symmetrical solution. 

So, we can reduce the size of the problem. For analytical solution, it does not matter that

much but if you are solving the problem computationally or numerically I mean reducing the

total domain size will reduce your computational cost that is you will require less number of

grid points to solve the problem and so on.

Computational time and computational cost will be less. So now can you tell what will be the

boundary condition here? It should be partial derivative of T with respect to x equal to zero.



So, at x equal to zero you have this and at x equal to L, T equal to T zero . See you can make

this problem very nicely attractable by method of separation of variables by transforming

even both the boundary conditions to be homogeneous. 

Right, if you define theta equal to T minus T zero then this will give you theta equal to zero

at x equal to zero. 
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So, let us recast the problem by writing theta is equal T minus T zero. So, boundary condition

at  x  equal  to  zero,  At  x equal  to  L,  theta  equal  to  zero.  And the  governing differential

equation now, we will use the method of separation of variables. So, theta equal to let us say

that theta is a product of a function of x and a function of time. So, you have g dash, fg dash

equal to alpha f double dash g from this. So, f double dash by f equal to g dash by alpha g. 

Now when you write this equation, this is a function of x only, right. This is a function of T

only. So, function of x only is equal to a function of T only. That means each must be a

constant.  Now the  question  is  whether  the  constant  is  a  positive  constant  or  a  negative

constant. That we have to carefully figure out. Again, if you make a mistake as I told you that

there are two ways of figuring it out one way is the hard way. 

That let us say, you make a mistake you will see that it will not eventually satisfy your initial

or boundary conditions. But there is a simple physical way of figuring it out. See, this is dg

dt, right. So, dg by g if you integrate it will be Ln of g. So, that will be equal to this alpha into

the constant into T. So, what is g? G is the time dependence of the problem eventually as you



allow the time as T tends to infinity what will happen? 

The time dependent part of the solution will vanish because it will attain a steady state in the

limit as time tends to infinity this problem will attain a steady state. Because this problem

will attain a steady state what it will mean? It will mean that the unsteady part of the solution

will decay with time, right. Because it will decay with time and g will an exponential function

of T a negative constant will imply an exponential decay.

Otherwise it will be an exponential rise. So, therefore we can say that this is equal to minus

lambda square. So, now let us apply the boundary conditions before applying the boundary

conditions let us see the solution. 
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So, dg by dt, I y alpha g, dg by g is what? Ln of g is equal to minus alpha lambda square t

plus ln of some constant C1. So, g is equal to C1 into the power minus alpha lambda square t.

Now what is the solution for f? cos and sin, right. So, C two cos lambda x plus C three sin x.

The solution is related to the product of f and g. Now let us apply the boundary conditions.

Boundary condition number one at x equal to zero, delta theta dx equal to zero this boundary

condition.

That means basically dx will be equal to zero. So, if you make df/ dx cos will become sin and

sin will become cos, of course plus minus. I am not bothering. So, cos will become sin so at x

equal to zero that term is automatically equal to zero and the derivative of this will be cos. So,

at x equal to zero you have C three, x equal to zero if f has to be zero then C 3 must be equal



to zero, right. 

Because if C3 is not equal to zero then the entire solution is a trivial solution that is if f equal

to zero solution itself is zero. 
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The next is at x equal to L, theta equal to zero means you have C two cos lambda L equal to

zero again here C two cannot be zero because if both C one and C two are zero then what

happens? Then it results in a trivial solution. So, only possibility is that cos lambda L equal to

zero. That means lambda L is two n plus one into pi by two. Because there are infinite such

possibly values of n you have infinite such possible values of lambda.

 so, each lambda is denoted by lambda with subscript n. So, lambda n equal to two n plus one

into pi by two L. This is the lambda. This is the so called IN value of that problem. Now, the

solution theta is you have C three equal to zero C two cos lambda x into C one e to the power

minus alpha lambda square t. This is the solution but we have to keep in mind that there are n

such possible values of lambda for each value of lambda this is the solution. 

So, for n such possible values you have summation of these for over n that should be the

solution. That is because of the linearity of the governing differential equation. So, the total

solution is a sum total of the solution for each possible value of lambda and lambda will have

infinite number of possible values. So, now in place of C1 into C2 let us write this as Cn into

the power minus alpha lambda n square t into cos. 



So, the only part of the problems that remains is to calculate what is Cn? If we find out what

is  Cn then that  completes  the solution of the problem. So, how do we calculate  Cn? To

calculate Cn we will refer to this equation. 
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So, we write, now we basically need to derive an orthogonality condition in the context of

two-dimensional steady state problem we discussed what is an orthogonality condition. And

similar orthogonality condition will be derivable here so how do we proceed towards deriving

the derivable remember the objective of deriving the orthogonality condition is we can isolate

Cn and we can figure out that for one value of m equal to n only that is none zero.

And for other cases the coefficient of Cn becomes zero. So that out of the summation you can

isolate  the  Cn  from the  summation.  So,  now  what  we  did  we  multiplied  it  by  fm  and

integrated  by watts.  The same thing  we will  do here.  So dx then  this  is  a  higher  order

derivative so this we will put a second function and this we will put as first function. So, first

function, this is second function. 

So, first function into integral of the second minus integral of derivative of first into integral

of the second. Now there are certain simplifications we can make see this boundary term at x

equal to zero (()) (27:13) dfn dx equal to zero. Because delta theta delta x equal to zero and at

x equal to L you have theta equal to zero that means f equal to zero. So that brings this entire

boundary term equal to zero.

And  that  is  why  we  actually  had  to  use  the  homogenous  boundary  conditions.  So  that



homogenous boundary condition clean up this boundary term either this equal to zero or this

equal to zero either of this. These are homogenous boundary conditions.  So that leads to

products equal to zero and this term goes away. Now next what we do we write the same

equation but swap n and m. 

So, swap n and m and then subtract. If we subtract then what will happen these terms will be

zero. I mean they will get cancelled and you will have lambda n square minus lambda m

square integral of fn fm dx from zero to L equal to zero.
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So, this leads to integral of fn fm dx zero to L equal to zero if m is not equal to n and is not

equal to zero if m equal to n. which is the so-called orthogonality condition. Where fn is

what? fn is cos lambda nx, right. And lambda n is given by this equation. So, we can now

attempt to find out what is  Cn by applying the initial  condition so far as our solution is

concerned  we  have  used  only  the  boundary  condition.  We have  not  yet  used  the  initial

condition. 

So, at initial condition at time equal to zero, theta equal to say theta i which is Ti minus T

zero. So, theta i is equal to summation of Cm cos lambda nx. So, what we will do we will

multiply both sides by cos lambda mx, fn into fm and then integrate so theta i cos lambda mx

dx. Now by the orthogonality condition this product integral of this product is zero if m is not

equal to n. Only in one case it is none zero when m is equal n. 

So, this series will eventually be only one term, one none-zero term so that none-zero term.



So that  non-zero term if  you isolate  that  means you can write  Cn integral  of cos square

lambda n x dx, zero to L equal to integral of theta i cos lambda n x dx. So, this will tell you

what is Cn that completes the solution of the problem because once you know Cn you can

substitute that here to get theta and see this solution is very general.

Because  if  the  initial  temperature  is  a  function  of  position  then  also  you can  solve  this

problem. If initial temperature is constant then you just need to take this out of the integral

otherwise if this a function of x you just put it as a function of x I am not going into the

integration of sin, cos, sin and these terms. These are all high school level stuff and we should

not waste time here we should better use the time to develop physical insight now into the

solution, right. 

So, let us try to do that. Now let us try to see that if you want to plot the solution of this

problem how will the solution look? 
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Let us say this is the domain. Of course, this is infinitely long but I have just truncated it and

drawn it like this. So, if you consider the central line first of all it is the solution is symmetric

with respect to the central line. So, at very early times the solution may be something like

this, right. At very early times then the solution becomes this as you progress with time and

eventually if you go for time tends to infinity what will be the solution? 

It  will  be uniform throughout,  right.  Because there is  no heat source so as time tends to

infinity then the steady state solution will be what? A constant so this is progressing time.



Initially there will be a difference between see the slab has an initial temperature and you are

subjected into a boundary condition so what will happen? There will be a difference between

these two and that difference will trigger some heat transfer but that difference will be slowly

nullified as you are proceeding with time. 

In the limit as time tends to infinity the time dependent solution goes away. So, when you

have the time dependent  solution gone then you will  be basically  having just  the special

dependence of temperature. Now this you can blot also in terms of none dimensional number

we  have  discussed  about  this  which  is  Fourier  number.  So  sometimes  to  make  a  none

dimensional representation instead of T you plot it as a function of alpha T by l square.

We discussed that alpha T by l square which is the Fourier number, this is t by L square by

alpha. So, this is the time divided by diffusion time, heat diffusion time. In fact, the entire

solution the time dependent solution you can write as a function of two none-dimensional

numbers the Biot number and the Fourier number. You should try to make an attempt to write

the solution in terms of the none dimensional numbers Biot number and Fourier number.

We have defined both of these numbers in our previous lecture. The next point is that what

will be the change in solution if we change the boundary condition. For example, we have

considered both the ends to be at the same temperature T zero but let us say this end is at a

different temperature then this. Then you cannot directly use the method of superposition of

variables. So, what we have to do is basically you divide the problem into two problems.

One problem is when both the ends are at the same temperature then you solve in this way

and with that super imposed another problem when there is a differential of the temperature

of the two ends and steady state solution of that. So, let us say that end is T zero and this end

is T zero dash so one problem is that you solve our steady state problem when this T zero let

us say an example with T zero not equal to T zero dash.

So, you can solve a steady state problem by considering this radiant and there you do not

consider any unsteadiness the entire unsteady as you dump on other problem where you have

both ends at the same temperature and then that total solution is a linear superposition of that

two solutions where for the second problem where you show the unsteady problem you can

use this method. For the steady problem, it is a simple one-dimensional steady state heat



conduction. 

So net solution is the sum total of the two solutions you have to be a little bit careful of how 
to give initial condition for the unsteady problem but that I leave on you as an exercise.


