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Superposition Method for 2-D Steady State Conduction

We discussed about 2-dimensional steady state heat conduction and we will take it up from

there. We discussed about one simple problem that you have a domain like this with these as

the boundary conditions and this is the equation which we solved.

(Refer Slide Time: 00:37)

Now, we will try to develop some physical insight about this problem. So, to develop the

physical insight let us take an example. Let us say f 1 x equal to 100 a constant, so in that

case, if you consider this domain then how will the constant temperature lines are isotherms

look like that is what we want to schematically show. So, these kind of physical insight is

important because many times you can solve the problem and then find that graphically plot

the solution.

But if you have a good physical intuition, good physical insight you can schematically draw

the  graphical  representation  without  even  solving  the  problem  and  that  kind  of  skill  is

important for solving practical problems. So, now here you see that the temperature here is

throughout 100, but here it is 0 in this boundary it is 0, so what is the predominant direction

in which temperature gradient is created. 



The predominant direction in which the temperature gradient is created is the Y direction

because it is changing from 0 to 100 here. Along x also there is a gradient, but the gradient

gives the periodic nature of the solution, ok. It is not a nonperiodic solution. It is a periodic

solution along x and a nonperiodic solution along y. So that will mean that you will  get

constant temperature lines like this. What is the value of this? this is 100. 

Let us say this is 50, this is 25 like that, ok. So, you will see that constant temperature lines

will be like this. Now, there are typical situations when the boundaries are adiabatic and how

will the constant temperature lines be at the boundary when the boundary is adiabatic. Let us

consider a second example, this is example 1.

(Refer Slide Time: 04:23)

Example 2, let us say these 2 boundaries are adiabatic. When you have adiabatic boundaries,

you will  have constant  temperature  line perpendicular  to  the boundary and the reason is

obvious. If it is adiabatic then what does it mean it means that the heat flex is 0 that means

the normal temperature gradient is 0 that means along the normal direction temperature is not

changing. Therefore, the normal direction is the isotherm or constant temperature line, ok. 

So, this kind of a situation for example you will get isotherms like this. Let us say this is 100

and this is 0, so you will get isotherms like this. Now, all these examples give rise to some

ambiguity and let us try to discuss about that ambiguity. Now let us look into this problem.

Here the temperature is 100, here the temperature is 0, the shifted temperature that is theta is

t- some t 0. Let us say this is 0, this is 0, this is 0 and this is 100.



And this is the question which we always like to avoid is that what is the temperature here or

what is the temperature here right. This is the problem we always try to avoid and why we try

to  avoid  this  is  because  when  the  theories  of  differential  equations  are  discussed  over

boundaries.  The  boundaries  normally  had  not  having  any  corner.  They  are  smoothly

connected boundaries.

Now, here you are having boundaries with corners and these are practical problems like in

engineering  you  will  often  get  boundaries  with  corners.  So,  the  question  is  what  is  the

temperature here. So, in mathematical analysis if you are solving the problem numerically

then this kind of question is tackled in a different way. 

So, if you have a domain, if you are solving this problem numerically, I told you that this

belongs to the CFD for like solving these problems numerically but just to get some idea that

what is done if  you want to solve this problem numerically.  What you basically do, you

divide the domain into a number of subdomains, discrete subdomains and you may mark each

subdomain with a grid point may be the centroid of each subdomain. 

These subdomains are called sometimes elements, elements in finite element method, control

volume, in finite volume method and so on. So, there are different names of the subdomains.

So, if you have these points these are discrete points and then you also have discrete points on

the boundaries because boundary condition needs to be incorporated, ok. There are some here

also, but you can see that very purposefully.

These points are not considered to be parts  of the discretization,  right.  So, what you are

doing, you are trying to write algebraic equation instead of your differential equation. So, you

convert  your differential  equation into a system of algebraic equations.  Each equation for

each of these circle points. So, as many number of circle points you have, so many number of

algebraic equations you have.

Then you solve a system of algebraic equation by standard methods in linear algebra that is

what you do but this corner points are not considered. So, why these corner points are not

considered is  because these are  points  of singularity.  So,  at  this  point  the temperature  is



neither 100 nor 0, sometimes some people do it like this they say that ok let us make it 100

plus 0 by 2. There is everything in that except science. 

So, that is not the proper way of handling it. So, these points are usually avoided because

these  are  points  of  singularity  and  because  these  belong  to  2  boundaries  and  these  2

boundaries have different conditions. Therefore, it is impossible to impose the condition at

that common point. ok. So, typically this point is just excluded. So, excluding these points

when you draw the isotherm it shows that this point is included.

But actually, this is slightly Epsilon distance away from the corner. Because in the limit that

Epsilon tends to 0, so in drawing the figure we cannot show it, but conceptually it is a small

Epsilon from the corner where the Epsilon tends to 0, but is not exactly equal to 0 because

those are points of singularity.
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There is another example which I want to consider where we relax the boundary condition

and consider a problem like this. Ok, you have a domain like this. This is your domain, you

are interested to find out the solution for theta within the domain. Now, this clearly does not

satisfy the requirement that 3 of the 4 boundary conditions are homogeneous. Here, only 2

boundary conditions are homogeneous and 2 are not.

So, these kind of problem can be solved by using the principle of superposition, so how this

can be done. This is equivalent to 2 problems. Theta 1 is equal to 0, theta 1 is equal to 0, theta

1 is equal to 0, and theta 1 is equal to f 2 x plus theta 2 is equal to 0, theta 2 is equal to 0,



theta 2 is equal to 0, and theta 2 is equal to f 1 y, so this will be governed by del square theta

1 del x square plus del square theta 1 plus del y 2 equal to 0. 

This is del square theta 2 del x 2 plus del square theta 2 del y square is equal to 0 and the

general solution is theta 1 plus theta 2. The reason is that because the governing differential

equation is linear if theta is equal theta 1 is a solution and theta is equal to theta 2 is a solution

theta equal to theta 1 plus theta 2 is also a solution to the governing differential equation

which is shown here, ok. 

So, this kind of superposition technique we can use for linear problems, we cannot use for

nonlinear problems so in many problems were fluid flow is present then sudden nonlinearity

may come or  may not  come,  so if  nonlinearity  come then we cannot  use this  technique

anymore, ok. So, this is about the 2-dimensional steady state problems. Now, we will give

you some homework assignments and homework assignment will be uploaded.

And I would like to ensure that we send the homework assignments prior to you over email

and like for  the  mock course it  will  be uploaded in some sites  and then there will  be a

separate tutorial when we discuss about the solutions of the specific problems. So, the way in

which we go about this course is that we work out some problems in the class, we give you

some homework problems, out of which some of them have might have already been worked

out in the class or somewhat straight forward extensions.
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For example, I can give you a homework problem where f 1 x is equal to a x. This is the

problem from the exercise of the textbook of (()) (16:03). So, f 1 x is equal to a x, now it is

only a simple integration that you have to do because the entire frame work I have developed

already  in  the  class,  so  in  heat  transfer  remember  sometimes  students  say  where  is  the

problem because it is very difficult to understand what is theory and what is the problem.

In heat transfer, everything is theory and everything is problem. So, there is no distinction

between it is not like a junior school level thing, so that you have a formula you monitor and

then you put a value in the formula it becomes a problem, so that kind of education in heat

transfer we are not going to provide you.

So, the problem means it is basically from the scratch, from the first principles you have to

derive and if there are numerical values you just have to plug in the numerical values but we

do not  expect  that  you remember  any formula  to  solve  any problem that  is  the  kind  of

philosophy that we will adopt in the course of heat transfer, so no formula based study please,

ok.  Now,  we  will  move  on  to  our  next  issue  in  the  conduction  heat  transfer,  which  is

unsteady. 

Of course, we have done steady state problems, so the next obvious extension is unsteady, but

there is something in between which is neither steady nor unsteady and that is called as quasi

steady and I will discuss some such problem before coming into the unsteady problem.
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So, quasi steady has some resemblance with quasi-static or quasi-equilibrium process that

you must have studied in thermodynamics, so again the only distinction is that there is a

difference between steady and equilibrium, so that much of difference is there but notionally

if you think of a problem in thermodynamics,  a classical situation when there is a piston

moving in a cylinder, very classical problems in thermodynamics involve a piston moving in

a cylinder may be there is some gas in between the piston and the cylinder.

Lets us say that you have some waves on the top of the piston, the waves are such that these

are very thin slices so what will happen you remove this top slice this piston will go up by a

little bit, right. Then, you remove the next slice the piston will go further up by a little bit

because for a given mass the pressure is decreasing, so the volume is increasing right. 

So,  in this  way it  will  undergo a very slow expansion such that for the entire  expansion

process all the in between states are almost in thermodynamic equilibrium and the deviation

from thermodynamic equilibrium is very little. So, the keyword is that this is the very slow

process because it is a very slow process the deviation from equilibrium is almost nil, so that

kind of process is called as quasi-static or quasi-equilibrium process in thermodynamics.

So, similar analogy in heat transfer not exactly the same again I am giving you a caution there

is a difference between steady state and equilibrium which we have discussed, so similar

analogy in heat transfer is a quasi steady. Quasi steady means in the long run it is unsteady

because things are changing with time, but the change is so slow that the entire change can be

thought of as a collection of a change taking place through a large number of intermediate

steady states that kind of process is called as a quasi steady process.
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So, now I will discuss about an engineering problem as an example you may think of it as a

problem or as an example or whatever, let us say making of ice. Ice making is a big industry

and there are many ways in which ice can be made. Now, there is a situation something like

this you have a metal plate and there is a refrigerant which is flowing below the metal plate

with a particular velocity and there is a heat loss, so over this there is water. 

Let us say this refrigerant is at minus 10 degree centigrade, ok. So, this water because it is at

a  higher  temperature  as  compared  to  this,  it  will  lose  heat  through  this  metal  plate  by

conduction and once the heat is lost it will come to a state when the temperature comes at the

freezing point of water and then some ice will be formed. The water converted into ice its

layer will thicken and beyond the critical thickness that is crept off and new layer of ice starts

forming. 

So, this  is  a simple old-style  technology of making ice,  ok.  So, now let  us make a heat

transfer analysis for this particular problem. So, we can make a quasi steady type of analysis

but this is a very interesting problem where we are involving a change of phase. So far in the

theoretical description of heat transfer, we have purposefully avoided problems with change

of phase. Now, let us bring into an example where we have a change of phase. 

So, let us say that this is an interface, ok. On this side there is solid, on this side there is

liquid. I am not discussing about this problem first, but I am discussing about a different

problem just to know that what kind of boundary condition you should use at the interface

between the ice and the water.
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So, we are taking an example which is little bit different this is melting of a solid. So, let us

say there is a solid, there is a heat transfer here, let us say it is a 1-dimensional situation.

There is a heat transfer along x, so some heat is utilized for melting the solid to liquid. Let us

say that  we take a small  control  volume like this  surrounding the interface.  This control

volume is  of thickness  delta  x in the limit  as delta  x tends to 0 we can recover a  sharp

interface. 

In reality, in the molecular vault no interface is sharp because there are molecules in one

phase and molecules in the other phase and there is a gradual transition when you go from the

molecular arrangement of one phase to the molecular arrangement of another phase. So, it is

not sharp but macroscopically if you see it will appear to be a sharp interface and that sharp

interface is recovered in the limit as delta x tends to 0.

But we take a control volume like this and let us say that there is a rate of heat transfer Q dot

in and there is a rate of heat transfer Q dot out. Let us say A is the area of the interface

perpendicular  to  the direction  of heat  transfer,  so what  is  Q dot in this  is  minus KA by

Fourier’s law. What is Q dot out similar term. Now, which one is more Q dot in or Q dot out,

some heat has been transferred to the control volume.

And something  is  leaving  now in  between  what  has  happened  in  between  the  solid  has

converted into liquid, so what has been the case when the solid has converted into liquid

some heat has been taken by the solid to get converted into liquid in the form of latent heat,



so whatever is going out must be less than whatever has come in because whatever is going

out and whatever has gone in a part of that is utilized for melting. 

So, whatever is going out is less than whatever has gone in.
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So, we can say Q dot in minus Q dot latent is equal to Q dot out, right. So, what is Q dot

latent, so M dot into the latent heat which is let us say h s f, ok. We will see what is M dot but

I will just symbol wise this is the rate of mass being converted from solid to liquid and that

multiplied by the latent heat is the total latent energy transfer, ok. Now, if you divide all the

terms by the cross-sectional area then M dot by A let us say that is mass flex M double dash

then we can write minus K. 

Of course, what is M not actually the row into A into delta x this is the mass divided by the

time delta t over which the space change process is being studied. So, M double dash is that

divided by A, so this becomes row into limit as delta t tends to 0 delta x by delta t right

because why we make the limit as delta t tends to 0 because in the limit of delta t tends to 0

delta x will also tend to 0.

Then only this interface will become a sharp interface macroscopically, so this will become

ok. Now, there is something which is more interesting at this undergraduate level I do not

want  to bring this  issue,  but  just  an open question which you think about  this  is  row of

which? row of liquid or row of solid. Yes, row of liquid or row of solid. So, sometimes you

know when you given an answer in the answer book you write something here.



Then if I say that it is liquid you say I have written liquid, you cannot see it and because as

professors we are old with spectacles and all then it is expected that we cannot see it, so you

can keep it fuzzy but heat transfer is not a topic of fuzzy logic it is different. Fuzzy logic is a

different subject and heat transfer is a different subject, so there is no fuzzy answer to it. I

will complicate the question by even one more standard what is that let us say that the density

of the solid and liquid is different and that is practical. 

Usually if  a substance melts  either  it  will  expand or it  will  contract,  so the densities are

different  then  how is  this  differential  density  taken into account  in  this,  ok.  These are  2

questions which I keep open for this particular case we will consider the density of the solid

and the liquid phase are equal so that that ambiguity is not there, so you can consider this is

as either row S or row L.

But I will ask you the answer please think about it, it is a question for thinking. Now, this

type of boundary condition in heat transfer is an interfacial  boundary condition known as

Stefan  boundary  condition,  ok.  So,  you can  use  this  Stefan  boundary  condition  for  heat

transfer for a phase change, any phase change. If it is evaporation, condensation just these

things will change. 

For evaporation, this will become h f g. From saturated liquid to saturated vapor whatever is

the latent heat. If there is no phase change then these term will be 0, right. So, at the interface

what is the boundary condition that you have minus K del t del x is continuous. Why because

interface cannot store thermal energy, so whatever thermal energy has come to the interface

the same thermal energy should be transferred to the other side of the interface. 

So minus K into temperature gradient normal to the interface that is continuous. What is the

analogy in fluid mechanics, if you have flat interface and let us say that you have a velocity

profile along Y then mu, du, dy is continuous across the interface. So, if you have liquid and

vapor, so mu liquid into du, dy at the liquid is same as mu vapor into du, dy at the vapor. Of

course, this will be little bit disturbed if you have a curved interface and so on.

But I am not bringing that complication at this level. I am just trying to give you an analogy

between heat transfer and fluid mechanics.
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Now, how do you apply that formula to this particular problem. This problem is just inverse

of this problem where instead of melting it is freezy, ok. Now let us try to assess the problem

by assuming that this is the layer of ice that has been formed and let us say the thickness is x.

So, now can you draw the temperature profile  within the system, so first  of all  this is  a

metallic plate, why do we use the metallic plate in this case in engineering?

See, metallic plate will have a very high thermal conductivity, so the temperature drop within

the plate is very small or temperature rise rather in this case not drop. Temperature rise within

that is small, so that means virtually the water is exposed to a temperature which is close to

minus 10 without any substantial increase within the metallic plate, ok. So, if you want to

draw a temperature profile.

So virtually there will  be some little  change because it  will have some conductivity then

within the ice,  it  is  pure 1-dimensional  conduction,  so there will  be a  linear  temperature

profile and then within water the temperature gradient will not be as sharp as that in the ice.

So, you can safely neglect this turn. The temperature gradient in the liquid phase is much

much less than the temperature gradient which is there because the temperature gradient is

virtually is primarily imposed across this, ok. 

So, you are left with these 2 terms, this term and this term. So, let us say that the temperature

here is T s and the temperature this minus 10 degree centigrade is T infinity. So, how do you

write this term you write K of solid into the temperature gradient, so basically you write T s



minus T infinity. Now when you write T s minus T infinity you have to take the resistance of

this phase plus the resistance due to convection here. 

The resistance due to conduction here is very small because the conductivity of the plate is

very high. So, you have basically 3 resistances in series, one resistance is because of the flow

of  refrigerant,  this  refrigerant  is  flowing so  what  kind  of  resistance  it  is  creating  it  is  a

convective resistance. So, let us say H is the convective heat transfer coefficient here and this

is the conductive resistance due to of course the area is observed here.

Because it is already divided by area that is why the area is not put there. This term balances

the other term that is row into h s f into d x, d t, right. So now you can integrate this with

respect  to x to  find out x  as the function  of time,  ok.  So that  is  a simple  state  forward

integration,  I  am not putting that here.  So,  this  will  tell  you that  how do you design the

system.

Because if you want to design the system you have to design that what is the thickness of the

ice that is formed at a given time because that is your productivity so you must keep a proper

design and you will see that what are the parameters which are defining these. What is the

temperature here, what is T infinity and what is the conductivity of the solid and what is the

heat transfer coefficient?

Heat transfer coefficient will be higher if you flow the refrigerant at a higher speed, so that is

where convection will come into the picture, ok.




