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Good afternoon  to  all  of  you and I  welcome you all  to  the  session  on Conduction  and

Convection heat transfer. In last classes, we discussed the one-dimensional steady state heat

conduction through plane surfaces. We also discussed the plane surface where the area is

cross sectional area, that is area normal to the heat flow is varying, how to deal with the

problems and we have solved two interesting problems in the last class.

Now, today we will discuss one-dimensional steady heat conduction in cylindrical geometry.

Now, in  a  plane  wall,  as  we have  seen  the  application  where  we can  use  the  sufficient

coordinate system, but in cylindrical geometry, we have to use cylindrical polar coordinate

system. Now the cylindrical geometry comes mostly in case of pipe. When a hot fluid flows

through a pipe.

 then the heat is being transferred from the fluid by convection to the inner wall of the pipe

and then by conduction from inner wall to outer wall of the pipe and in many occasions to

reduce the heat loss, we have to provide insulation, insulating material and provide another

thickness to the cylindrical pipe, so those are the application of steady one-dimensional heat

conduction in cylindrical coordinate system. Let us see that.
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Let us consider a cylinder like this and the problem is specified like this, which we will be

discussing.  Let  this  be the center.  The cylinder  with inside  radius  r1 is  cylindrical  tube,

outside radius r2, that means this portion is the solid cylindrical wall type of thing and the

length of this cylinder is L and the problem is like this, r2 the outside radius of the tube, outer

radius is very less than L, that means length is much more than the radius.

And the inner surface is maintained at a temperature T1 constant temperature throughout the

surface.  So,  the  inner  cylindrical  surface  is  maintained  at  T1  while  the  outer  surface  is

maintained at  a  temperature  T2 and T1 is  greater  than T2.  Now, in  this  case since it  is

maintained at a constant temperature, there is no variation in the azimuthal direction, theta

and also the temperature is same along the length of the cylinder.
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This can be expressed in terms of cylindrical coordinate system if it is sufficient coordinate

the r, this is the polar azimuthal angle theta and z, r, theta and z.  The coordinate system, in

which  any  point  here  in  the  cylindrical  wall,  r1  to  r2  can  be  specified,  where  z  is  the

coordinate along the length and r and theta the radial and azimuthal coordinate. 

Now, for this type of boundary condition, constant temperature both azimuthally and axially

along  the  length,  that  is  along  z  direction  and  r2  being  less  than  L,  this  assumed  one-

dimensional heat conduction and we will consider a steady state, that means heat is going in

such a way that the temperature is invariant with time, that is the situation when we are going

to analyse the problem.



This problem in fact is assumed as state when the boundary condition are steady that we have

to understand. The problem becomes generally unsteady continuously when the boundary

conditions are unsteady, but the boundary conditions are steady after a transient, the system

always attain a steady state, so we consider a steady state. 

In this case, T is function of r only and only the heat flux in r direction exists, only Qr exists

that means there is heat flux in the r direction, Qr, now our job is to find out the temperature

distribution,  heat flux distribution, what is the amount of heat flux across any section, all

these, which we did for plane surface. The analysis is exactly the same as we did for plane

surface, only difference is the mathematical state, how? 

We proceed with that the x and element, annular element at an orbit value radius r. We take

an annular element like this, a cylindrical ring at an orbit value radius r with the thickness

delta r.

(Refer Slide Time: 07:47)

For clarity, I write here the annular ring. This is at an orbit value radius r, with this one delta

r, then our same analysis what we do is that if Qr is the heat flux incident on this inner area,

then this is the dimension, I am sorry. This Qr is the heat and heat going out is Qr plus delta r.

The equation is very simple. If we consider a heat generation per unit volume qG within the

cylindrical wall with extent from r1 to r2.

Then for this elemental ring, I can write Qr plus delta r at steady state is Qr plus qG times

volume of this element. The volume of the element is the cross-sectional area is twice pi r



into length where L is the length, that means it is a cylindrical ring, length is perpendicular to

the direction of the board. This is the area times delta r, that means this is the total thermal

energy generation, so Qr plus delta r going out. 

At steady state, there is no other alternative, this is same equation, which we wrote for plane

area  and  I  have  always  told  that,  my  suggestion  that  for  steady  one-dimensional  heat

conduction is greater to derive the equation from fundamental.  This is okay. Now, if you

write series expansion Qr plus delta r is Qr plus del/del r of Qr delta r plus higher order

therm, which mean delta r, which we neglect, higher order therm in delta r, because delta r is

very small.
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So, if we write this, Qr plus then, we can write del/del r of Qr delta r is equal to qG into twice

pi r L delta r. So, this equation is the same as we did for plane wall. Now, we have to replace

Qr by food-air conduction equation. What is Qr? At any radius, at an orbit steady location r,

Qr is minus K into the cross-sectional area at that r into dT/dr, so therefore if we put that

here, now here also twice pi r L, actually it is the cross-sectional area.

I can write in terms of the cross-sectional area, Ar. This is nothing but the cross-sectional

area, twice pi r L, so that we can write. Now this del/del r, I can write as d/dr because it is a

one-dimensional heat conduction Qr exists and it is a function of r only, d/dr of, take this here

A this side, Ar dT/dr plus qGAr is equal to 0. Delta r gets cancelled. My sole intention to

write in this fashion, again this right to Ar.



So, I wrote earlier twice pi r is very simple, that this is the same equation, which we have

used in the plane surface with varying area, that d/dx in x and y coordinate system when T is

a function of x in sufficient coordinate system KAx dT/dx plus qGAx 0, but the difference is

that in plane area, this A may be constant under substance equation. It will come out and

equation becomes d/dx K dT/dx plus qG 0.

In some cases, it is varying and the integration depends upon the type of variation of A with x

even if K remains constant, but here Ar is fixed. Ar is two pi r L.
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So, therefore, if you just substitute this, then you will get d/dr and if you take two pi L to be

constant and L cannot be 0, so you can cancel that, d/dr of Kr dT/dr plus qG into r equal to 0

and  this  is  our  basic  equation  for  temperature  distribution  in  differential  form.  If  K  is

constant, then K will come out. It may be going here by K. Now this same equation, I again

tell you can be derived from the general conduction equation. 

The way I told the plane surfaces also, that we can generate the same thing by it is greater

always  to  maintain  energy  balance  for  a  steady  one  dimensional  and  derive  your  own

equation, but from the general equation also, we can come to this. In a cylindrical coordinate

system, the same thing will appear, just for your interest I tell you, if you recollect the general

energy equation, which was derived in the class in terms of Cartesian A. 

Cartesian frame of reference rho C del T/del t is equal to del/del x of K del T/del x plus if you

remember del/del y of K del T/del y plus del/del z of K del T/del z plus qG. So, this was the



general energy equation where T was defined as a specific heat, which if you find in such a

way that mass times a specific heat times the rate of change of temperature equals to the rate

of change of internal energy of the material

And in a solid, it  is the change of the internal energy because there is no flow, no other

energy process to the boundary, so therefore it is the change. Within the control volume, it is

the change of the internal energy, so this is the left-hand term. So, therefore, this equation,

you know, you are familiar with, general energy equation or heat conduction equation, but

now the question is that this is in frame of Cartesian coordinate system, x, y, z. 

How  do  I  get  the  same  equation  in  cylindrical  coordinate  system  or  cylindrical  polar

coordinate system. There are two ways of doing that. The most simple way of doing this, that

is just transform this equation in vector form. You write this in general vector form del T/del t

is equal to what is these del/del x of K del T/del x, del y, this is divergent of K grad T plus

qG.

And you know in Cartesian coordinate system, grad T is what, i, j, k being the unit vector

along x, y, and z direction, i del T/del x plus j del T/del y plus k del T/del z and divergent is a

vector operated, which i del/del x plus j del/del y plus k del/del z, this is again a school level

thing and if you make this scalar product, which the operator and the exact K grad T, so if

you convert this.

Then your  job will  be only to  expand this  term in different  coordinate  system,  not  only

cylindrical, even the spherical polar coordinate system, what is the expression of divergent K

grad. This is only the spatial derivation, which change with respect to the coordinate system.

That is all.
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So, in a cylindrical polar coordinate system, r theta z. If we write this divergent K grad T,

then it will be like this, rho C del T/del t is equal to 1 by r, I think you know this thing, del/del

r of Kr del T/del r plus 1 by r square del/del theta of K del T/del theta plus del/del z of K del

T/del  z  plus  qG.  That  means,  in  a  cylindrical  polar  coordinate  system,  if  we  define  a

cylindrical polar coordinate system like this, in x-y plane.

If I define this the point r and its azimuth of this and this is the location in three-dimensional

cylindrical polar coordinate system, from the origin by the radial coordinate arc, azimuthal

coordinate and the axial z coordinate. So, in that r theta z if you expand this divergent K grad

T you get this.  That means this is the counter part of this  and here, for one dimensional

definitely you just ignore this and steady state, steady state one dimensionally 1 by r, that

means if you take out this becomes the same expression.
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That means this equation becomes 1 by r and del/del r, you write d/dr, that means from the

general heat conduction equation we can also get the same expression that is 1 by r d/dr of Kr

dT/dr plus qG is 0, so this is my one-dimensional steady heat conduction in a cylindrical wall.

It is as simple as that. Another way of deriving this equation is the same. This is the most

simple and intelligent way. 

Another way of deriving this equation is the same the way you derived the heat conduction

equation in Cartesian coordination. What you did? You took an element or controlled volume

in the conducting medium whose surfaces are parallel to the coordinate planes or edges are

same thing parallel to the coordinate axis and which becomes a parallel with pipe x for a

Cartesian coordinate system. 

Similarly, you have consider an element of controlled volume whose planes are parallel to

cylindrical  coordinate  system.  That  means parallel  to  r  theta,  r  z,  z  theta  plane  and then

recognize the heat flux flowing across this plane and take a balance of the total heat flux

coming into the control volume, which is change in energy, the way it has been done for

Cartesian coordinate system.

And it is a routine matter and it is done in any book you can see that it is not being done in

the class, but most easy way is to convert this into cylindrical polar coordinate system by

changing, expanding the divergent K grad T in the respective cylindrical coordinate. Now,

after this my job becomes much more simple mathematics at school level to integrate this

equation and before that, I consider another simple case that K is constant.



We consider that K is constant.  Now when K is constant, this expression comes.
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1 by r d/dr of r dT/dr plus K is constant, so if you take K, plus qG by K is 0. Now next you

consider without heat generation, that means q 0, that means without heat generation steady

state constant thermal conductivity, the expression is 1 by r d/dr of r dT/dr, which means d/dr.

Now this becomes so simple that it is a mental problem without paper, we can solve this. The

solution of this is T is equal to some constant lnr plus C2. 

r dT/dr is C1, it is constant and then again integrate C1 lnr dr/r plus C2, okay. What are the

boundary conditions? Boundary conditions are this and there are two constants, two boundary

conditions also given in the problem at r is equal to r1 and T is equal to T1 and r is equal to r2

and T is equal to T2.
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If you use these two boundary conditions, you get a profile temperature distribution T1 minus

T divided by T1 minus T2. T1 is the inner surface temperature, which is higher than T2 is

equal to ln r by r1 divided by ln r2 by r1. It is very simple that you substitute this to find out

T1 and T2. T is equal to T1 ln r1 plus C2 and T2 is T1 ln r2 plus C2 and you can find out T1,

T2 and finally you get this as the logarithmic distribution. 

This is the temperature variation with r. It cannot be linear, because the area is parallel. In a

way that it is directly proportional to the r. Now, if you find out the Qr at any section, at any

arbitrary location that already we wrote the expression, minus K into ar, that is twice pi rL

into dT/dr.
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What is dT/dr? dT/dr is minus dT/dr minus T1 minus T2 divided by this is constant ln r2 by

r1 and this differentiation r1 by r and again 1 by r1, that means 1 by r and if you multiply here

that r cancels. That means Qr becomes, and minus minus is plus, so therefore twice pi KL

divided by lnr2 by r1 into T1 minus T2. So, it is found that with this temperature distribution,

heat flux at any radial location r is independent of r.

Obviously because I have found the temperature distribution from the steady state constant

without  heat  generation,  Qr  plus  del  r  has  to  be  equal  to  Qr,  we have  made Qg 0.  So,

therefore it has to be like this. It is proved that it is okay. So, this is the heat flux and this heat

flux in the similar way can be expressed as T1 minus T2 in the numerator, Qr, divided by ln

r2 by r1 divided by twice pi KL and this acts as the conduction resistance.
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So, therefore if I write Q is equal to T1 minus T2 divided by conduction resistance. This

conduction resistance is equal to ln r2 by r1 divided by twice pi LK, that means this can be

represented by electrical analogous circuit like this, that this is the Qr radial direction, this is

T1, this is T2, 2 potential T1 greater than T2, T1 greater than T2 and this is the R conduction,

which is in case of plane surface it was L by K.

In case, cylindrical wall it is ln, or Q by r1 or what nomenclature you use or O by ri from

outer radius to inner radius, that means ln times the ratio, that means ln of the ratio of the Q

radius and then, r2 by r1, twice pi LK, okay. Now this thing can be also be deduced in a very

simpler way, how? The same thing Q is twice pi KL, T1 minus T2 divided by ln r2 by r1

twice pi KL.



I  am telling  you another  method,  which you see often in  a book, because this  is  a  very

generalised  approach  to  find  out  the  temperature  distribution  and  like  this,  but  another

method is sometimes used.
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That has any radial location Qr, I know the temperature distribution is written like that, heat

flux is K into twice pi r L dT/dx. There is no assumption, Qr is minus K 2 pi r L dT/dx, this is

an analog of heat conduction. Now if I neglect heat generation, steady state, we did so many

things,  but  it  is  a quick approach,  that  Qr,  that  is,  across  any cross section,  at  any R is

constant, that means Qr itself is constant.

Then you can write as Q itself. That means I can write Q, and I can make like this twice pi

LK equals to, pi R, pi LK equals to R dT/dr, and next we can write Q by 2 pi LK dr by r is

dT.
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Now if I integrate this from r1 to r2, inner to outer, and a variability T1 to T2, and with this

consideration, that Q is constant, which is not varying in the radial direction, because for a

steady state heat transfer without heat generation same heat has to pass through each and

every perception. In the similar way, I told for plane wall also it can be done like that, in

many books it is done like that.

If you integrate this taking this out, this will be simply T2 minus T1, you straight get the

equation. Q is equal to Qr or simply Q whatever you call this now you can think of as Q, so Q

is equal to that heat flux already in the radial direction there is no point of writing in the

radial direction Qr, Q is equal to this, automatically you get this. 

Now the question comes here, by this I arrived an expression of heat transfer in terms of the

terminal temperature difference, but where is the temperature distribution, very good. Then

you can take the arbitrary r not the r2 the outer radius, then you take the T, then you get an

equation Q, heat flux in terms of T1 minus T, and here it is ln r by r1, becomes a mental

problem. And divide one by another, you get the expression like this.

So, this is the most easy way, also to find out the temperature distribution. That you write the

heat  flux,  connect  from one to  two integrate,  you get  the heat  flux in terms of  the  total

potential difference, or you take any arbitrary location r, which a temperature T there. Then

you get an expression Q in terms of T1 minus the temperature T, where this will be r instead

of r2, and divide one by other you can get.



This is the easiest way of finding out that, but always it is better to derive an equation under

certain  special  or  complicated  cases,  you must  have  the  practice  of  generating  the  basic

equation from an energy value for small element, of the heat conducting medium, which is

always good. So, that you arrive at and solve the temperature distribution and then write the

periodic conduction equation to get that thing. 

And this is one of the easiest way most of the book write that taking Q to the constant, that of

all section to get this. 


