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So, we will consider a second example of exact solution of the Navier-Stokes equation through 

something which is very important in fluid mechanics this is called a Couette flow.  
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Consider two parallel plates with relative motion; that means, let us say that the bottom plate 

is stationary and the top plate is moving towards the right with a velocity u1. The gap between 

the plates is small and the flow is fully developed. 
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Ex. 2 Consider steady incompressible fully developed flow of water at 200 C between two 

horizontal parallel plates with the gap between the plates is 2 cm. A constant pressure 

gradient 900 /
dp

Pa m
dx

= −  . The upper plate moves with a uniform speed whereas, the lower 

plate is stationary. Find the velocity of the upper plate.                  ( )310 .Pa s −=   
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Thin film flow under fully developed condition 
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B.C.s (1) At y=0, u =0(no slip) 
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So, we will consider steady, laminar incompressible, fully developed, flow through a circular 

pipe, this is called as Hagen Poiseuille flow.  

Fully developed flow, vr=0 
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Darcy friction factor: 
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