Introduction to Fluid Mechanics
Prof. Suman Chakraborty
Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture — 53

Navier-Stokes equation- Part-111

We have discussed in our previous lecture the governing equation for viscous flow for
Newtonian, Stokesian homogeneous and isotropic fluid. And, the corresponding equation

known as Navier-Stokes equation let me write that once more.
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So, let us try to understand what is a fully developed flow. Let us say that we have a channel
made of two parallel plates. This is a simplified version of a rectangular channel where there

are other boundaries, but for simplicity let us consider a channel with two parallel plates.

Now, let us say that fluid comes from far stream with a velocity u_ . Now, this fluid flow will

be resisted as the fluid encounters the solid boundary. So, first this velocity profile is uniform;
next let us consider another section. Let us say this pipe is quite long so that we can get a fair
understanding of what happens as we proceed along the axial direction of the pipe. Axial

direction of the pipe is x.



Now, if we draw a velocity profile here what happens at the wall the velocity is 0, because of

the no slip boundary condition. Now, further away from the wall the velocity increases.

So, the momentum by the disturbance created by the solid boundary is such that the fluid comes
to zero velocity, when it is in contact with the solid boundary and then what happens is that the
velocity increases as we go away from the solid boundary then the velocity is uniform and after

this again the velocity decreases like this.

Boundary layer region is adjacent to the solid boundary and outside the solid boundary it is
called as the core region.

Then, let us go to another section which is further away from the solid boundary further away
from the entrance and let us try to draw the velocity profile. As this fluid is now more and
more into the channel more and more fluid will be influenced by the effect of the wall. So,
the boundary layer will be thicker.
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Assumptions: 1) Steady flow; 2) Incompressible flow
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Fully developed flow through parallel plate channel

Let us consider two parallel plates making a parallel plate channel and let us consider that the

centre line coordinate is the x and cross coordinate is y.

So, if we are interested to consider fully develop flow we will consider beyond this regime. So,
we are not considering what is happening at the entrance region of the pipe or the channel. So,
now, for fully developed flow we are writing u is not a function of X, u = u(x)

ov

2-D incompressible flow: a +—=0
ox oy

For fully developed flow: u = u(x) = Z—u =0
X



:>@=0:>V¢V(y)

Aty=tH,v=0=v =0 forall y if there are no holes in the plate

op
y-momentum = —
oy
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Ex. 1
Given 1 =0.12Ns/m?, p=900Kg /m*,2H =20mm,u,_ =1.5m/s

Steady, incompressible, fully developed, 2D

Solution:

u_3(1 vy
(1)5_2(1 sz

U=Umax at y:O



X =—=U
1] 2
=u0=1Im/s
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(2) y=H-5=(10-5)mm=5mm

u= gﬁ[l_FJ where y=bmm=u=1.125m/s
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(3)Q=0x2H x1

_Q =Ux2H =0.02m®/s
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