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Navier-Stokes equation- Part-III 

 

We have discussed in our previous lecture the governing equation for viscous flow for 

Newtonian, Stokesian homogeneous and isotropic fluid. And, the corresponding equation 

known as Navier-Stokes equation let me write that once more. 
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So, let us try to understand what is a fully developed flow. Let us say that we have a channel 

made of two parallel plates. This is a simplified version of a rectangular channel where there 

are other boundaries, but for simplicity let us consider a channel with two parallel plates. 

Now, let us say that fluid comes from far stream with a velocity u  . Now, this fluid flow will 

be resisted as the fluid encounters the solid boundary. So, first this velocity profile is uniform; 

next let us consider another section. Let us say this pipe is quite long so that we can get a fair 

understanding of what happens as we proceed along the axial direction of the pipe. Axial 

direction of the pipe is x. 



Now, if we draw a velocity profile here what happens at the wall the velocity is 0, because of 

the no slip boundary condition. Now, further away from the wall the velocity increases. 

So, the momentum by the disturbance created by the solid boundary is such that the fluid comes 

to zero velocity, when it is in contact with the solid boundary and then what happens is that the 

velocity increases as we go away from the solid boundary then the velocity is uniform and after 

this again the velocity decreases like this. 

Boundary layer region is adjacent to the solid boundary and outside the solid boundary it is 

called as the core region. 

Then, let us go to another section which is further away from the solid boundary further away 

from the entrance and let us try to draw the velocity profile. As this fluid is now more and 

more into the channel more and more fluid will be influenced by the effect of the wall. So, 

the boundary layer will be thicker. 
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Assumptions: 1) Steady flow; 2) Incompressible flow 
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Fully developed flow through parallel plate channel 

Let us consider two parallel plates making a parallel plate channel and let us consider that the 

centre line coordinate is the x and cross coordinate is y.  

So, if we are interested to consider fully develop flow we will consider beyond this regime. So, 

we are not considering what is happening at the entrance region of the pipe or the channel. So, 

now, for fully developed flow we are writing u is not a function of x, ( )u u x   
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Wall shear stress, 
3 3

w

u u u

y H H


  

  
= = − = 

  
 

Fanning’s friction coefficient, 
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Ex. 1 
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