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Navier - Stokes equation - Part-II 

 

Now, so far we have considered only linear momentum conservation. So, we will take a little 

bit of distraction from that and we will now think of angular momentum consideration.  
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Just like linear momentum refers to translation, angular momentum refers to rotation. Now, let 

us say that we are interested about rotation with respect to z axis. Now, we can decouple the 

rotation in terms of rotation with respect to x axis, rotation with respect to y axis and z axis, x 

means x1 y means x2 and z means x3. So, we can isolate these effects and consider one at a 

time. So, we can consider for example, rotation with respect to the z axis or x3 axis. Then it is 

important that we consider only the forces which take place which are there in the xy plane or 

x1x2 plane. 

So, let us say this is the x1 axis and this is the x2 axis and let us say that we give dimensions to 

this such, that this is delta x1 and delta x2. Now, we are interested to have rotation with respect 

to or an equation for rotation with respect to x 3 axis an axis that passes through O. So, for 

rotational motion we can write resultant moment of all forces with respect to an axis which is 



normal to this plane and passing through is equal to the moment of inertia with respect to the 

same axis times the angular acceleration. 
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Because all these forces pass through this point O therefore, these do not contribute to the 

moment with respect to an axis passing through O. Let us draw the tangential forces. So, first 

let us show their proper directions and then we will write the force. 
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For calculating the moment of the forces these incremental changes will not essentially matter; 

these changes will not essentially matter. 

So, essentially for calculating the moments these two forces are like almost equal and opposite; 

they are actually not equal there is an incremental change, but in the limit they are almost equal 

opposite and anti-parallel. So, they will form a couple. This force is upward and this force is 



downwards. So, this is creating an anti clockwise moment. So, this is a positive moment. So, 

this is 12 1 2x x    .  
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Lim 1 2, 0x x  →  

12 21  =    

If there is a body force is still because, its moment with respect to O is 0 until and unless it is 

asymmetrically distributed. But, if there is a body couple then because of the body couple there 

could be an additional couple moment. So, the assumption is no body couple. 
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I will bring the previous page. So, what you see here is that we had 13 number of unknowns 

and 4 number of independent equations. Now, we have proven that ij ji =  . 



(Refer Slide Time: 16:38) 

 

For fluids the stress is a function of rate of strain or rate of deformation ok; function of rate of 

strain or rate of deformation. 
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It is deformation that gives rise to stress. But it is also true that when the fluid is not under 

motion or under deformation then also there is a stress. 

So, when the fluid is at rest when the fluid is at rest, the force is due to pressure. When the fluid 

is deforming still then the pressure is present; stress is due to pressure + stress is due to 

deformation. The deformation can be linear or angular, linear will give rise to volumetric 

deformation and shear deformation, angular deformation will give rise to shear deformation. 



The expression for the volumetric deformation is divergence of the velocity vector 
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 ij  is a function of pressure(P), ,
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Kronecker delta ij        1ij =  if j=1 

        =0 otherwise 



So, for a Newtonian fluid relationship between ij  and rate of deformation is linear. If the fluid 

is homogeneous and isotropic, isotropic that can be represented by a position independent and 

direction invariant fluid property called as viscosity.  
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 →  volumetric dilation coefficient,   is viscosity.  
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P→ thermodynamic pressure 



Mechanical Pressure, Pm
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So, mechanical pressure will usually reflect the translational degrees of freedom of molecules 

whereas, that thermodynamic pressure will reflect all sorts of degrees of freedom.  

When Pm=P 
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Every fluid when subjected to a change will take some time to adapt to the change and this 

time is known as relaxation time. But, there can be a very interesting situation when the time 

over which the change on the fluid is imposed is shorter than the relaxation time; then the fluid 

cannot adapt to the change and then a new change by that time has come. 

So, then we can say that it is a very rapid process. Let us take an example. So, if you have a 

bubble which is rapidly expanding and contracting then what is happening is that the time scale 

of imposition of the change is very rapid. If its relaxation time is not that fast then the fluid 

cannot relax to a new thermodynamic state before a new change has taken place. And then it 

cannot equilibrate its properties so, that it can convert all the degrees of freedom to the 

translational degrees of freedom instantaneously. 

So, if it cannot convert all the degrees of freedom to the translational degrees of freedom 

instantaneously then the equality of mechanical pressure and thermodynamic pressure will not 

take place. Therefore, for very rapid changes where the timescale of imposition of the change 

is faster than the relaxation time of the fluid; then the Stokes hypothesis will no more be valid. 

So, it is very important to understand that Stokes hypothesis is not a law it is a hypothesis.  

So, it does not have a proof, but there are physical arguments that for most of the practical 

scenarios the time scale of imposition of the disturbance is significantly larger as compared to 



the relaxation time scale. So, that fluid relaxes almost instantaneously so, that it attains an 

equilibration of mechanical and thermodynamic properties. 

ij →  expressed in terms of ,P   and velocity related parameters 
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Navier’s Equation: 
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Angular momentum: ij ji =   
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This equation is known as Navier-Stokes equation. So, the assumptions that we have taken 

for this equation are 

1) Homogeneous fluid 

2)  isotropic fluid 

3) Newtonian fluid 

4) Stokesian fluid 

5) No body couple. 
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Continuity Equation: ( ) 0j
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Special Case:   is given 4  eqns and 4 unknowns 

If ρ is not given ( , )p T → = →  Eqn of state 

If T is not a constant, you require another governing equation for T Energy→  equation 

The Navier-Stokes equation is a second order partial differential equation and it is a non-linear 

partial differential equation and it is a coupled system of partial differential equations. 

Stokes law is the law that describes the drag force of a slowly moving sphere in a viscous 

liquid. 

 

 

 


