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Lecture – 24 

Deformation of fluid elements – Part I 

 

Next, what we will do? We will start analyzing the Deformation of fluid elements. 
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Why this is very important? Because we have seen that fluids are characterized by deformation, 

they undergo continuous deformation under the action of even a very small shear force and the 

relationship between the sheer force and the shear stress and the rate of deformation is 

something which is unique to the constitutive behavior of different fluids. 

So, we must first understand that how to characterize deformation of fluid elements in terms 

of the velocity components. Once we understand that it will be possible for us to 

mathematically express different types of deformations in terms of the velocity components 

say u, v and w. When we do that we have to keep in mind that we will be essentially bothering 

about two types of deformations; one is the Linear, another is the Angular deformation. 

When we talk about the linear deformation, it may eventually give rise to a change in volume 

of the fluid element also. Because if you have a length element and the length element gets 



changed; a volume element is comprising of several such length elements. So, if linear 

dimension gets change, the volume is also likely to get changed. 

Initially, we will think of how we can estimate the linear deformation. So, we will start with 

the linear deformation. To understand or to get a visual feel, we will consider a fluid element 

like this; maybe we may consider even a 3 dimensional fluid element if you want. But that will 

not make the thing more complicated because at the end, we will be dealing with linear 

deformations in individual directions. See why we use a coordinate system for analyzing a 

problem? 

The reason is like say when you think of xyz the Cartesian coordinate systems; these are 

independent coordinates. A combination of which describe the total effect in the system. So, 

when you are thinking of a linear deformation along x, you may be decoupled from what is the 

linear deformation along y and z and these individual effects you can superimpose because you 

are dealing with linearly independent components and these vector components actually give 

you linearly independent basis vectors like components along x, y or z. 

So, similar concept whenever we are considering a change along x maybe we are bothered only 

with respect to like what is the change in the linear dimension along x disregarding what 

happens along y and z. So, let us keep that target let us say that  x is the length of the fluid 

element which is originally there and now what is happening? Now we are having a change in 

time and because of a change in time, now you see that let us consider the front face of this 

cuboid. 

So, this left phase over a time interval of  t will traverse at this displacement; will undergo a 

displacement, what is the displacement? If u is the velocity at this location, simply u into  t. 

We are considering the time interval  t to be very small. So, it is like just a u t. The right 

phase will also undergo some displacement; what is that? So, if this is the x direction, the new 

u here is same is not the same as the u at the left phase, but this is because of change in u due 

to change in x. 

So, this is 
u
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. So, if you consider only the front phase and only subjected to this 

motion, say we freeze all other events just for a clear picture. So, maybe now it is having a new 



configuration shown by this dotted line. So, what is the change in its length along x? That is 

the final length minus the original length. 

So, what is the final length? So, what is the net change? See the right hand phase has got 

displaced by this amount; the left hand phase has got displaced by this amount. So, the net 

displacement is the difference between these two. So, what is that change in length? So, 
u

x
x






t   is the change in length along x. What is therefore, the strain along x; the change in length 

per unit length? 

So, the strain along x this is the elemental strain because we have considered only a small part 

of the fluid which is having an extent of Δ x. So, this is elemental strain along x. As we have 

discussed earlier, we are not just interested about the strain for a fluid because if you allow it 

to grow in time the strain will be more. See if this Δ t is larger and larger and you integrate it 

over a large interval of time this will be trivially more and more. 

So, measuring strain in a fluid is nothing that is important. It is just a function of the time that 

has elapsed; what is more important is the rate of deformation or the rate of strain. So, the rate 

of strain along x; what is that? It is basically 
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So, we have been successful in finding out a very simple thing, what is the rate of linear 

deformation along x, y and z in terms of the velocity components. 

So, if you are given u as a function of position; v as a function of position and w as a function 

of position, by simple partial differentiation, it will be possible to find out the rates of change. 

Now we are interested not only just in terms of the rate of change in the linear dimension, but 

maybe rate of change in the volume. So, to understand that what is the rate of change in the 

volume, let us say that we are having this fluid element which has dimensions along x y z as Δ 

x Δ y and Δ z. 
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So, we set up coordinate axis as this is x, this is y and this is z. So, Δ x Δ y and Δ z. Now what 

is the new length? So, to we are interested to get the new volume. So, what is the new volume?  

New length along x 1
u u
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New length along y 1
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New length along z 1
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So, when you say find out per unit volume, you are basically dividing it by this Δ x Δ y Δ z. 

So, this is like the original volume. Let us give it a symbol V  . So, that is the original volume. 

So, what is the rate of volumetric strain? This change in volume divided by volume divided by 

Δ t and take the limit as Δ t tends to 0, when the all other higher order terms in the limit will be 

0. So, it is not that we are neglecting. The one Δ t here will remain even after division by Δ t 

that will be tending to 0 as in the limit Δ t tends to 0. 

So, we may write it in terms of the total derivative. See the volumetric strain; it may be due to 

many things change in time change in position and a combination. So, we are not bothered 



about that what is the individual effect; we are bothered about the total effect. What is the net 

change in the fluid element volume because of this? So, this should be expressible in terms of 

the total derivative. 

Rate of volumetric strain
1

.
DV u u u
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This leads to a very important definition, the definition is with regard to incompressible flow. 

So, when we say that a flow is incompressible. 

So, incompressible flow by the name it is clear that we are looking for a case when the fluid 

element does not change in volume. 
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So, incompressible flow, it will have what signature? One and only important signature 0 rate 

of volumetric strain because the fluid element may not be changing its volume that is the 

meaning of that is even the literal meaning of incompressible that you cannot really compress 

it. 

So, 0 rate of volumetric strain and that boils down to the divergence of the velocity vector is 

equal to 0. So, if you are given a velocity field and you are asked to check whether it is 

compressible or incompressible flow, then it is it is it is possible to check by looking into the 

fact whether it is satisfying this equation or not. If it satisfies this equation, we say that it is an 



incompressible flow. Keep in mind the distinction between this definition and incompressible 

fluid definition. 

So, earlier we also introduced the concept of incompressible fluid and we said that a fluid is 

incompressible, if its density does not significantly change with change in pressure. So, that is 

incompressible fluid. Now we are talking about incompressible flow. And these two are again 

related, but different concepts that we have to keep in mind. So, when you are having an 

incompressible flow, it is possible to characterize the particular flow in terms of its mechanism 

by which it satisfies the overall conservation of mass. 

To understand how it does? Let us try to write an expression for conservation of mass of the 

fluid element. So, we will now write conservation of mass for fluid. For a fluid element let us 

say that m is the mass of a fluid element. You can express it in terms of the density and the 

volume. Let us say that   is the density and V  is the volume. 

Since the mass is conserved of a fluid element. So, there will be 0 rate of change of mass. So, 

the since we know already the expression for the volumetric strain and in that volumetric strain 

1 by v appears; it may be useful to utilize that expression by taking log of both sides and then 

differentiating. Because then 
1

V
 will automatically come out. 

So, let us take the log of both sides and then differentiate with respect to time. When we say 

we want to differentiate with respect to time, it has to be a total derivative. So, because it is a 

fluid element now, it may have change with respect to change in position, time whatever we 

are bothered about. Now, the total effect because the conservation of mass is not for individual 

effects, it is a combination of total effects that gives rise to a mass of a fluid element is 

conserved.  

So, when we write say when we differentiate it with respect to time by keeping that in mind, 

we have the left hand side like this which again becomes 0 because the mass of the fluid element 

is conserved.  

ln ln ln
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This equation in a general understanding is supposed to be the most fundamental differential 

equation in fluid mechanics because no matter how complex or how simple the flow field is, it 

should satisfy the law of conservation of mass. 

So, this is a differential equation expressing the law of conservation of mass for a fluid element 

and this is known as continuity equation. So, if you are given a velocity field, you must first 

check whether it is satisfying the continuity equation. If it does not satisfy the continuity 

equation, it is an absurd velocity field. It may be mathematically something, but it does not 

physically make any sense because it has to satisfy the mass conservation. 

Now, briefly let us look into certain special cases of these. So, what are the special cases? The 

first special case we consider as steady flow. So, when you consider a steady flow, then how 

this equation gets simplified to? So, steady flow means the first term. At a given remember 

what is the definition of steady? At a given position any fluid property will not change with 

time. 

Steady flow .( ) 0V→ =   

Let us consider a second case incompressible flow. We have to keep in mind that there is a 

very big miss concept that we should try to avoid; what is that? Many times we loosely say 

incompressible means density is a constant. It is a special case of incompressible flow, but it is 

not a general case of incompressible flow because general case of incompressible flow is what? 

The divergence of velocity vector equal to 0; that is the definition. 

Now, where does it ensure that ρ is a constant that basic definition never ensures that ρ is a 

constant. At the same time it can be shown that if ρ is a constant, then this will be satisfied. So, 

the converse is true; that means, ρ is a constant is a special case of incompressible flow, but it 

is not a general case. What is the general case, let us look into that. So, when you are looking 

about the general case, you have to see the continuity equation. So, if when you look at the 

continuity equation, look into this primitive form that is not the compact form, but this form 

before that. 

Incompressible flow 0
D

Dt


→ =   



See a very interesting thing, it does not mean that ρ is a constant because ρ might be a function 

of position and time in such a way that this collection of terms eventually gives rise to 0. If ρ 

is a constant this collection will definitely give you a give it to be 0, but that is a trivial solution 

that is a trivial solution to the case that is ρ is a constant; therefore, any derivative of ρ with 

respect to time or position is 0. 

But even if any derivative of ρ with respect to position and time is not 0, still the net effect may 

be 0 and then even though ρ is a variable, we will say that the flow is incompressible. So, a 

variable density flow may also be an incompressible flow; this is a very important concept. So, 

incompressible flow need not always be a constant density flow. 

So, a typical example is let us say that you have a domain like this; within this there is a fluid. 

Now this fluid change at it is phase say it was in a particular phase, it was in liquid phase; now 

it becomes a vapor phase. So, when it becomes vapor phase, it becomes lighter. So, the same 

mass now cannot occupy this volume. 

Some extra mass will leave because you are constraining the volume and if you are having a 

change in density, you must have a flow to accommodate a change in density so that whatever 

fluid is there now is active accommodated within the volume that was given to you. So, you 

can see that you might have a change in density at a fixed position with time because maybe 

with time the phase change has triggered. So, with time the density has changed. So, this has 

to be now adjusted with some u, v, w so that the net effect may still be 0. 

So, it might so happen that now here the net effect it may be 0, it may not be 0. So, let us take 

an example where the net effect is 0. What is that example? Maybe there was a fluid now it is 

getting frozen and because of freezing its volume gets change. So, it is possible. So, its density 

has got changed, but we do not call say liquids or solids as compressible fluids. So, what has 

happened because if with freezing there is a shrinkage, then there will be a deficit in volume 

here; maybe to satisfy the deficit in volume, there might be a material supply from all sides. 

So, it is possible that to make a balance of what is happening locally and what is what is 

happening over the volume element, you might to adjust these things with velocity across the 

different phases of the element. So, in summary we can say that incompressible flow definition 

is the total derivative of ρ with respect to t0, but not just ρ is a constant. 



 

 

 

 




