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Lecture - 31
Robot Path Generation

We have been discussing about  the velocity  analysis  of  Robot  manipulators.  We are

looked at open chain and closed chain robot manipulators. So, the problem of velocity

analysis is to relate the actuator velocities to the end effector velocities, today we are

going to look into the problem of Path Generation.

(Refer Slide Time: 00:47)

So, to give you an overview of what we are going to discuss in this lecture, we are going

to look at  the path generation problem using the Velocity  based method. We look at

examples  of  the  RR open chain  planar  manipulator  and 3  RPR closed  chain  planar

manipulator.



(Refer Slide Time: 01:11)

So, as I have mentioned that the velocity analysis problem in the case of robots is also

closely related to the path generation problem, so given the actuator rates or the rates at

which the actuators are expanding or rotating, we can find the path that the end-effector

takes.

So, given the actuator rates we can find out the path of the end-effector, so that is a

forward problem. The inverse problem which is very relevant for various applications is

the path generation problem, in which for a given path of the end-effector we have to

find out the rate of expansion of these actuators. So, that is the inverse problem which is

the path generation problem.



(Refer Slide Time: 02:23)

We have discussed briefly what is the path generation problem. Now the path generation

problem has 3 components in it, let us go through them 1 by 1, first is the path planning

of the end-effector in the ground frame which means that given this configuration for

example this excavator, I would like to know in a certain ground reference frame what is

the  path  that  I  desire.  So,  essentially  is  the  representation  of  the  path,  now  this

representation  of the path will  take into account  for example,  obstacles  which might

represent or it might be that there is a bin on which this must be dropped.
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In that case it might go something like this, so based on our requirement we have to first

plan the path in the ground reference frame. The second point is the specification of

velocity on the path. So, if I have to generate this path how do I generate? I specify the

velocities that I desire for the end-effector on this path, something like this. Once I have

the end-effector velocity at every point on the path I transform that velocity back to the

joint space.  So, essentially I find out the actuator  rates to produce the corresponding

endeffector velocity. So, that is the plan of this path generation problem, so that is how

this will proceed.

(Refer Slide Time: 05:19)

So, we will look at open chain and closed chain manipulators.



(Refer Slide Time: 05:27)

So, this is the problem of path generation, so essentially this is the second and third path.

So, what we have is we have the path already specified or determined. Now we have to

specify the velocities at each point on this path. So, we are given the end-effector path in

terms of x E and y E as a function of time so these are specified, so as the function of

time I  know how x E and y E weld.  We have to  determine  the corresponding joint

trajectory or the joint velocity.
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So, the way we will proceed is that given the path we can differentiate at every point and

determine the velocity of the end-effector at a specific point on the path. So, here we can

differentiate  and  find  out  the  velocity  as  a  function  of  time  and  using  the  velocity

analysis we are going to determine the joint velocity which comprises in this case is theta

1 dot and theta 2 dot.

(Refer Slide Time: 07:35)

So, let us review what we had discussed in the velocity analysis problem, so we were

given the displacement relations.
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Then differentiating the displacement relations we arrived at the velocity relation, input

output velocity relation. So, on the left I have the end-effector velocity vector and on the

right I have relation through the Jacobian to the joint velocity vector. Whether an element

of the Jacobian for the 2R manipulator  has been written out,  this  we have discussed

already.

(Refer Slide Time: 08:35)

So, we had these relations and finally we obtain the velocity relations in the forward

kinematic  forward  velocity  analysis  and  this  is  the  velocity  relation  in  the  inverse

velocity relation. So, this is the inverse velocity relation and this is the forward velocity

relation. So, we have noted that in the inverse velocity relation we required the inverse of

the  Jacobian  and the  inverse  of  the  Jacobian  has  this  denominator  term,  this  is  the

determinant  of  the  Jacobian.  So,  this  determinant  must  be  nonzero  in  order  for  the

Jacobian to be invertible.
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So, this is our inverse velocity relation, now let us look at the example of a straight line

path generation. So, here I have 2 points x o y o and x f y f and I would like to connect

them by a straight line. Now every path planning problem can be considered to be a

specialization  of  this  problem,  because  any  path  can  be  thought  of  as  straight  lines

between infinitesimal points. So, if I can find this then I can generate any path.

So, let us look at this straight line path generation, first we are going to represent the

path. So, the first problem will be to represent the path. You can very easily represent this

X E and Y E at any point on the path as a function of time. So, here since we start with x

naught so this the x coordinate of the end-effector. So, we start at x naught and we move

linearly in time because of this additional term. So, we can see a time t equal to 0 I am at

x naught and similarity at time t equal to 0 I am at y naught.

This path has to be traversed in time t f, so essentially this time goes from 0 to t f. So, at

time t equal to 0 I am at x naught y naught a time t f when t is equal to t f then this factor

becomes 1, so this is x naught plus x f minus x naught so that becomes x f. Similarly y E

become y f so at time t equal to t f we are at the final point x f y f.
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So to differentiate this function then you have the velocity expression. So, this is the

velocity  of  the  end-effector  point  in  the  Cartesian  coordinate  in  the  ground  based

Cartesian coordinate system. So, this is the velocity that we are going to use, so once I

have the velocity now I can very easily, so I have the right hand side here this is the right

hand side, the velocity of the end-effector point forms the right hand side of this inverse

velocity relation and through the inverse Jacobian I obtain the joint velocity rates, so

joint velocity vector.

(Refer Slide Time: 14:21)



Now, there  is  this  inversion  problem of  the  Jacobian  as  we have seen here.  So,  the

inverse of the Jacobian has this determinant of the Jacobian setting and the denominator.

So,  you must  ensure  that  the  determinant  of  the  Jacobian is  non zero,  but  there  are

instances where this might go to 0 or this might go very close to 0.

So, let us look at this situation what we have here let us say a manipulator which traverse

this  path  up  to  this  point,  this  manipulator  moved  from  configuration  1  to  this

configuration 2 the black configuration.  Now here as you can see that this angle has

straightened out, so this angle theta 2 is roughly 0 degree. So, this is theta 1 measure

from the x axis and theta 2 is the angle made by the second link with respect to the first

link.

Now, here theta  2 is  roughly equal  to 0 and we have discussed that  the Jacobian is

singular when the determinant goes to 0, which in this case it is because theta 2 is almost

equal to 0 or 0 at this configuration. So, in that case the determinant of the Jacobian

vanishes  and  therefore  the  Jacobin  is  no  longer  invertible,  so  this  is  a  singular

configuration.

Now when the manipulator  passes through a singular  configuration there are various

possibilities, in the sense that I can generate this path if this path is such that it passes

through the;  so this  point let  us say on the path,  the manipulator  passes through the

singular  configuration  and  the  path  then  again  comes  inwards  as  you  can  see  the

manipulator is completely extended.

So,  this  point  on the  path is  actually  on the  boundary of  the workspace.  So,  this  is

roughly the boundary of the workspace which we have discussed before. So, this point of

the path lies on the boundary of the workspace. So therefore, the manipulator goes to a

singular configuration. At this configuration if you want to proceed further on the path

which again actually comes into the workspace as you can see, it touches the workspace

boundary  and  then  again  comes  inward  into  the  workspace,  so  therefore  it  can  be

continued.

So, at the workspace boundary either you can actuate theta 1 or you can just actuate theta

2, which means that one actuator can be held fixed the other actuator can be moved in

order to produce a velocity which is tangent.
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Because at this boundary point we need to generate a velocity vector of the end-effector

which is tangent to the path and since this is also the boundary, so it will be tangent to

the boundary. Now once you cross then you can come again, the configuration like this.

So, you can move from a configuration which I have shown in blue. So, you can move

from the blue configuration through the black configuration to the red configuration,

there is another possibility that you can move when you go past the singular point you

can move to a configuration like this.

So, this is also a possibility that the angle theta 2 here it was negative goes to 0 and then

again goes to negative or theta 2 was negative goes to 0 and flips to the positive side in

the ground configuration, as you can see here. So, there is a flipping of configuration

through  the  when  the  manipulator  passes  through  the  singular  configuration.  Now

usually near the singular configuration because the Jacobian is so in conditioned. 

So, we have this numerical problem; we have numerical problems because the inverse of

Jacobian  will  involve  very  large  quantities  and  therefore  once  you  have  very  large

quantities sitting in the inverse of the Jacobian then the joint velocities become very

high, this cannot may not be supported by your actuators, the actuators may not be able

to produce such high joint velocities.

So, you always face a problem, so the path has to be planned initially such that it does

not go very close to a singular configuration of the manipulator. If at all it is required that



the path has to go very close to the singular configuration, then the inverse problem has

to  be solved carefully. You have  to  put  additional  constraints  on the  velocity  of  the

actuators or the actuator rates, so that your motors or actuators do not get saturated. In

that case you loose on the path or you can loose on the velocity that you desired on the

path. So, there is a trade off, if the path is too close to a singular configuration then you

will lose accuracy on that path.

(Refer Slide Time: 23:27)

Now, let  us look at  the close chain 3 RPR manipulator, here this  manipulator  has 3

degrees of freedom, we are specified the velocity of the end-effector point, the velocity

trajectory of the end-effector point though x E dot y E dot and phi dot.

So, phi dot so phi is the orientation angle and x E and y E are the positional coordinates

in  the  ground  based  Cartesian  coordinate  system.  What  we  need  to  find  out  is  the

actuator expansion rates. So, this vector S 2 dot S 4 dot S 5 dot so here at the actuators

you  need  to  find  out  their  expansion  rates  for  a  specified  end-effector  trajectory  or

velocity. So, ones given the endeffector trajectory we can always determine or calculate

the end-effector velocity.



(Refer Slide Time: 25:05)

So, let us recapitulate what we are discussed about the velocity analysis problem for this

manipulator, we have these displacement relations in terms of the coordinates of point A.

So, here we have point A, so we have related the coordinates of point a in terms of the

end-effector coordinate and the orientation angle phi. Similarly the coordinate x B y B

they are related again to the end-effector coordinates and phi. 

Now if you time differentiate these relations you will get the velocity relations which you

use  in  this  set  of  3  equations  which  relate  to  the  actuator  expansion.  So,  once  I

differentiate these relations with respect to time and use the velocity relation that I have

here.
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Then I  obtain the velocity  relations  between the end-effector  velocity  vector  and the

actuator expansion rates.

(Refer Slide Time: 26:57)

So, here we are defined the Jacobian which relates the actuator expansion rate and the

end-effector velocity vector. Here this is quite straight forward because we will have the

end-effector velocity vector already specified through the path. So, this vector on the

right X E dot will be specified this is known to us, given the path we can find this vector

once we plan the time of motion. Therefore, we can directly find out the expansion rates



of the actuators. Now here again the Jacobian which might look very simple, but these

P1 P 2 P 3 Q 1 Q 2 Q 3 and R1 R2 R3 they have certain denominator terms which might

go to 0 and make the Jacobian singular.

(Refer Slide Time: 28:27)

So, let  us look at  one of these singular configurations,  here I have drawn a singular

configuration or a configuration very close to singularity, this manipulator is very close

to singularity because, the output link and this actuator angle, this angle let me call this

alpha is very close to 0. Now why this is singular? Because when alpha is exactly 0 it is a

singular  configuration  and  this  configuration  that  I  have  drawn  is  very  close  to

singularity. 

Now why this configuration is closed to singularity or when alpha become 0 why is this

singular? The reason is imagine that I have fixed these 2 actuators. So, this point gets

fixed this point gets fixed, now this output link can only rotate about point A point A is

fixed. Now this end-effector link can only rotate about point A; now who prevents the

rotation? This actuator this set of links, this should be able to constrain the output link so

that it cannot rotate. 

However, when alpha is 0, when alpha becomes 0 this part this leg of the manipulator

remember it  can only apply force along the actuator, this  leg of the manipulator  can

apply  force  only  along  the  actuator,  it  cannot  apply  any  force  perpendicular  to  the



actuator. In other words this actuator cannot prevent any rotation of, it cannot prevent

any rotation of the output link about point A.

So therefore, when alpha is equal to 0 the rotation of the output link cannot be prevented

by this actuator S 4. So therefore, there will be some rotation so the manipulator gains a

degree of freedom, why because it can rotate though is very small amounts there is a

possibility of very small rotations, you cannot constrain the output link using S 4 when

alpha is equal to 0.

So therefore, this is the typical gaining of degree of freedom in mechanisms at singular

configuration which we have seen, even for constraint mechanism it gains degrees of

degree of freedom at the dead centre or singular configuration. So, this is precisely the

situation here, so we have a singular configuration of a parallel manipulator at the dead

centre or singular configuration of the manipulator.

(Refer Slide Time: 32:45)

So, we have looked at the path planning problem. So, once you have the path which is

planned based on obstacles that might be there you plan a path of the endeffector, you

determine  the  velocity  and acceleration  profile  on the path,  you may have joint  and

actuator  limitations.  So,  joint  limitation  because  of  physical  construction  actuator

limitations  because,  it  may  not  the  actuator  may  not  be  able  to  produce  very  high

velocity or very high acceleration.



Remember that since we are determining the joint velocity based on the end-effector

velocity.  So,  the  joint  velocity  can  change  very  quickly  very  close  to  the  singular

configurations as we have seen. So, we can have very high joint velocities and therefore

we  will  require  very  high  acceleration,  if  you  require  very  high  acceleration  then

production of very high acceleration depends on the torque restrictions of the torque or

force restrictions of the actuators.

So,  near  the  singularities  the  motion  planning  is  tricky. So,  we will  have  very  high

actuator velocities and accelerations. So, you need more considerations or restrictions on

the joint motion near singularities. Now once you have restrictions you will have errors

on the path, so initial path planning has to be done carefully.

(Refer Slide Time: 34:39)

So,  to  summarize  we have looked at  the path generation problem using the velocity

analysis problem, we have looked at 2 examples 1 is of the open chain 2RR manipulator

and the other is the closed chain RPR manipulator. So, with that I will conclude the

lecture.


