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Lecture – 47
Entropy Transport for a Flow Process

In the previous lecture we were discussing about situations  where the second law of

thermodynamics  is  applied  to  control  mass  system.  But  there  are  many  processes

occurring in nature and engineering where the process concerns a of flow across the

system boundary and then we require a control volume analysis. So, we should now

devote our attention to understand control volume perspective of entropy change and

entropy transport. 
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So, entropy transport across a control volume. Let us say that there is a control volume;

across this control volume there are some inlets and exits, we symbolise inlet as i and

exit as e. There can be a change in state within the control volume itself. So, if it is an

unsteady state within the control volume it is 1 to 2 within the control volume; we want

to calculate  the net  entropy change during this  process.  What  we already know? We

already know how to calculate the net change in entropy for a control mass. So, we have

to take a call in expressing that known expression in terms of the change taking place



within a control volume and that can be done by appealing to our Reynolds transport

theorem. 

So, the Reynolds transport theorem. So, the symbols are as usual, this is the net change

of the extensive property n for a system this is the change within the control volume and

this is the flow net transport of the property due to flow across the control surface. So,

for this case, we are concerned about the transport of entropy. So, we consider N equal to

S example. So, dS dt plus this is property per unit mass. So, capital S per unit mass

becomes the lower case s; specific entropy. Now, this pertains to the change in entropy of

the control system. Recall the formula delta S is equal to delta q by t plus the entropy

generation.

So, then if you divide that by time delta t and take the limit as delta t tends to 0 then this

will become, the heat transfer will become rate of heat transfer by T. Remember that we

are considering that the entire heat transfer is taking place at a given temperature T, but if

the heat transferred is having different thermal reservoirs with which the heat exchange

is done then you have to put a summation over Q naught by y t where every heat transfer

is associated with the corresponding thermal reservoir.

So, in the control mass system expression the Q 1 2 by T that also can be generalized, it

can  be  summation  of  heat  transfer  divided  by the  corresponding  temperature  of  the

system boundary across which the heat transfer is taking place. 

So, here to simplify it I am not writing the summation, but it is if there are many thermal

reservoirs, it is technically summation of this where this is the corresponding temperature

of  the  system boundary, this  is  the  corresponding  heat  transfer  plus  rate  of  entropy

generation. Now we want to simplify this term.

So, what we make an assumption, as an assumption is that we assume that over the flow

boundary the respective flow boundary the entropy is constant. That is this is one flow

boundary this is another flow boundary over this the entropy is s i and over this the

entropy s e. So, then if you bring that out the integral of rho Vr dot eta d A is nothing but

the mass flow rate. So, this when will become m dot e s e minus m dot i s i again, you

can have a summation over entrance and exit.
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Now we will consider two special cases, steady state within the control volume there is

no change of state overtime. But at a given time it is uniform so, state 1 is uniform state 2

is uniform in case of steady state there is no difference between states 1 and 2 so; that

means, you can write summation of m dot e s e minus summation of m dot i s i is equal

to summation of Q dot by T in the summation T is not outside, Q dot by T as a whole is

the term plus rate of entropy generation so, this is case 1,.

Case 2 is uniform state uniform flow. So, in this case it can be un-study, but at a given

time the property is uniform within the control volume. So, for this case what we do is

we integrate this over time. So, if we integrate this over time; integrate overtime. So,

summation of Q by T plus entropy generation all the time derivatives are gone because

they are integrated over time ok. So, S 2 minus S 1 c v is m 2 s 2 minus m 1 s 1 ok. So, it

is  very  much similar  to  entropy  change  is  equal  to  heat  transfer  by  T plus  entropy

generation, this is the broad structure that you have to keep in mind. 
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Now, based on this we will consider some examples, steady state steady flow reversible,

adiabatic, single inlet, single exit. So, because the examples that we will consider in this

lecture will be steady state steady flow, I am just erasing the uniform state uniform flow

part of the theory to reduce your confusion. So, we will be using this equation steady

state steady flow reversible, adiabatic single inlet, single exit, because it is single inlet

and single m dot i equal to m dot e equal to m dot. 

So, m dot into s e minus s i,  adiabatic means heat transfer equal to 0 and reversible

means entropy generation equal to 0. So, reversible plus adiabatic with single inlet and

exit is this; that means, s e equal to s i. Now we can use the Tds formula; Tds is equal to

dh minus vdp right this we can always use across any property. So, in this case because

ds is 0 between states i and e, any state in between will have ds equal to 0 because the

process in equilibrium is changing from state i to state e without creating any net change

in entropy between any successive state.

So, ds equal to 0, integral of d s is 0, but ds individually between steps is also 0 so; that

means, you can write dh is equal to vdp. We will use this in a first law for the steady state

steady flow q dot plus m dot i h i plus p i square by 2 plus gz i is equal to m dot e h e

plus ve square by 2 plus gz e plus w dot c v ok. So, here it is adiabatic.

So, let us just write down w dot without writing c v. So, q dot is 0, m dot i and m dot e

are m dot. So, if you divide both the sides by m dot then this w dot by m dot let us call



this as specific work small w. So, h i minus h e plus V i square minus v e square by 2

plus g into z i minus z e is equal w. To calculate this h i minus h e, we can integrate this

from i to e or e to i whatever this d h is equal to vdp right. So, h i minus h e or in this

case is h e minus h i is equal to integral vdp from i to e. 

So, h i minus h e is nothing but it equal to minus integral vdp from i to e ok. So, we get

an expression for the work done which is minus integral vdp plus V i square minus V e

square plus 2 z i minus z e.
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Next example that we will consider is another limiting process, steady state steady flow,

reversible,  instead  of  adiabatic  it  is  isothermal,  single  inlet,  single  exit.  So,  only

difference is this  one, I am highlighting the different here it  was adiabatic,  here it  is

isothermal ok. 

So, let me write the entropy transport equation m dot into s e minus s i is equal to q dot

by p, there is only one temperature here because it is isothermal. So, no summation is

required plus entropy generation because it is reversible entropy generation is 0. So, Q

dot and this T is constant. So, Q dot is equal to m dot T into s e minus s i. Now you use

this Tds exactly the same steps we will follow as the previous case, Tds is equal to dh

minus vdp ok.



So now, you integrate it from i to e ok. So, if you integrate it from i to e and here T is a

constant because it is a isothermal process. So, you will have T into s e minus s i is equal

to h e minus h i minus integral vdp from i to e right and then we will apply the first law. 
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So, first law q dot plus h i; sorry, m dot into h i plus V i square by 2 plus gz i is equal to

m dot into h e plus V e square by 2 plus gz e plus w dot. In place of q dot, this is

reversible process. So, q dot is m dot into integral Tds. So, m dot T into s e minus s i

right, you can use that Tds formula if it is reversible process. This is h e minus h i minus

integral vdp from i to e. So, if you substitute that you will see h e and h i terms get

cancelled and you are left with minus integral vdp from i to e plus V i square minus V e

square by 2 plus g into z i minus z e is equal to w that is w dot y m dot. 

See  very  interestingly,  no  matter  whether  it  is  a  adiabatic  process  or  an  isothermal

process you get the same expression back at the end. Now, any reversible process can be

conceptualized  as  a  succession  of  a  number  of  a  reversible  adiabatic  and  reversible

isothermal processes because these two are very limiting processes. And using these two

limits, you can construct any other reversible process which may not be adiabatic or may

not be isothermal, but it can be thought of as a succession of a number of adiabatic and

isothermal  processes  ok.  So,  I  will  tell  you  why,  see  consider  the  T  s  diagram

temperature entropy diagram. Let us say this is an arbitrary process. So, you can think it



as a collection of steps like this, small steps, the horizontal line is constant temperature

and vertical line is constant entropy which is reversible adiabatic. 

So, any process can be thought of as a succession of reversible adiabatic and reversible

isothermal process this concept you have to develop. That means, we can say that now

for  any reversible  process this  equation  is  true,  provided it  is  reversible  steady state

steady flow, single inlet and single exit.
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So, the generalisation of our theory which is very interesting is that for any reversible

process; so, any reversible, steady state steady flow, single inlet and single exit process

we can write w is equal to minus integral vdp from i to e plus V i square minus V e

square by 2 plus g into z i minus z e ok. 
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If kinetic energy and potential energy changes are negligible then this will lead to; see

the formula for the work done is no more pdv, but minus vdp. And the reason is that here

the work associated with this is not due to movement of the system boundary, but it is

also has a; it has primarily something to do with the flow energy or flow work. The work

done to maintain the flow in presence of pressure, that has nothing to do with the moving

boundary  type  of  work.  This  is  a  work done for  a  control  volume process  and that

particular work done is primarily associated with if there has no other form of work, then

it is primarily associated with flow energy or flow work, work done to maintain the flow

in presence of pressure. 

So, for such a case you have to use the formula minus vdp and not pdv. I am telling this

repeatedly because this is a place where students make mistakes very commonly. So, this

is  one case, another case is  v equal  to constant  example that is a specific  volume is

constant. So, if v is constant then w is equal to minus vdp from i to e. So, minus v into p

e minus p i. So, minus p e v e plus p i v i because specific volume is 1 by density. So, this

is equivalently this one. So, now if you substitute it here minus p e by rho e plus pi by

rho i. So, w equal to sorry, plus V i square minus V e square by 2 plus g into z i minus z

e. 

So you can write, p i by rho i, that rho i and rho e are both equal to rho plus V i square by

2 g z i is equal to p e by rho e plus V e square by 2 plus gz e plus w, it is a sort of



mechanical energy conservation equation. Looks like Bernoulli’s equation, if you set w

equal  to  0  is  becomes  it  looks  like  Bernoulli’s  equation  very  deceptive  this  is  not

Bernoulli’s equation. Bernoulli’s equation is applied between 2.1 and 2 maybe along a

streamline or maybe two different points in the flow field depending on whether the flow

is irrotational or rotational. Here i and e are not two points, two they are two sections. 

So, it represents a gross mechanical energy balance between them two sections, if it is

reversible then there is no dissipation. Reversible process means there is no friction there

is no dissipation, in terms of fluid mechanics it mean when there is no viscous effect. 

So,  if  it  is  reversible,  steady state  steady flow with single  inlet  and single  exit  plus

constant density. Then the mechanical energy at section one, this is flow energy, kinetic

energy, potential energy together mechanical energy. Mechanical energy at section i is

same as mechanical energy at section e plus some work that could be possibly expected.

If the work extracted is equal to 0 then the mechanical energy at section i is exactly same

as mechanical energy at section e.

So, it is; so, you can see the combination of first law and second law for a steady state

steady flow process leads to the consideration of mechanical energy conservation which

for a special case gives rise to an equation which looks like the Bernoulli’s equation. So,

today what we have discussed? We have discussed, the second law of thermodynamics

expressed in terms of entropy or quantified in terms of entropy transport across a control

volume both for steady and unsteady problems and how that can be applied for steady

state steady flow processes with single inlet and exit.

Thank you very much we will start solving some problems on the second law on the

entropy transport across control volume from the next lecture onwards.


