
Concepts of Thermodynamics
Prof. Suman Chakraborty

Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 40
Thermodynamic Property Relationships; Entropy change for Solids, Liquids and 

Ideal Gases

In our previous lecture, we had discussed the concept of entropy not really what entropy

physically means, but mathematical definition of the change in entropy in terms of heat

transfer in a reversible process. So, the entropy change was defined through this, and

there are several facets of this particular equation that we will now discuss. The first

facet is that when we talk about the change in entropy for say a reversible process, that

means, let us say there is a process may be in TS diagram you have state 1 and you have

state 2. 
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So, you can construct a reversible path may be hypothetical, but you can construct it,

calculate the heat transfer during this reversible process, and calculate this integral of del

Q by T over this path that will be the integral of dS which is S 2 minus S 1. Now, once

you calculate S 2 minus S 1 that value can be used even for another process which is

irreversible and this is the beauty of this equation.



So, very important this has to be integrated along reversible path, but once integrated the

change in entropy can be used for any process no matter  whether  it  is  reversible  or

irreversible  because  entropy  is  a  point  function.  So,  how  this  is  possible,  this  is  a

remarkable thing in mathematics where you have a in exact differential, and here you

have  exact  differential.  So,  an  inexact  differential  is  converted  into,  so  this  is  also

integral  ok,  both  sides  integral  ok.  So,  inexact  differential  is  converted  into  exact

differential how it is converted into exact differential by introducing something which is

called as an integrating factor. 

So, here 1 by T is an integrating factor that converts the inexact differential  to exact

differential. Now, let us see that how you can use this to calculate the change in entropy

for any process. So, we can write from here del Q for reversible process equal to T dS

right. This is a consequence of the second law of thermodynamics. First law as it says is

del Q is equal to d E plus del W. Now, we make certain assumptions, neglect changes in

kinetic energy and potential energy. If we make this assumption then dE as good as dU.

This is first law for a control mass system we have to understand it. I am not writing it

explicitly may be let us just write control mass system.

So, once we do this, then you have del Q. So, we are applying this for the reversible

process. So, for the reversible process, delta W will be the reversible work. What is the

reversible work? Is it p dV or it can be also anything else? Well,  it is P dV, if it is a

simple  compressible  substance  undergoing  a  quasi  equilibrium  that  is  internally

reversible process, and the only form of work is the moving boundary work. If there are

other forms of work like say electrical work or work due to stretching of wire. So, all

those types of work, they can still be reversible work, but not expressed by the formula p

dV, but something else.

So, when we replace delta W with p dV we have to make sure that it is only a moving

boundary work of a simple compressible substance in a quasi equilibrium process. So,

this is the second assumption only using boundary work. So, only by moving boundary

work we are essentially meaning that it is a simple compressible substance, because you

know simple  compressible  substance  is  ruling  out  the  electrical  magnetic  and  other

effects which could be in addition to pressure volume and temperature changes. So, only

moving boundary work we are not again repeating that it is a quasi equilibrium process,



because it is reversible it has to be internally reversible, that means, a reversible process

must necessary be a quasi equilibrium process.

So, you have to understand it very clearly. Reversible process must be quasi equilibrium.

Quasi equilibrium need not be reversible because it can be externally reversible ok, so

only moving boundary work that will mean delta W equal to p dV. So, then you have del

Q is  equal  to  dU plus  p  dV. And we are  assuming  a  reversible  process.  So,  del  Q

reversible in place of this we will write T dS. 
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So, we come up with a expression T dS is equal to dU plus p dV. This is one of the

famous  thermodynamic  relationships,  property  relationships  which  relates  various

properties. So, the question is because it relates various properties, and all this properties

are point functions, we can definitely say that this equation is valid for any process, but

that is a little bit lose statement.

By that  what  we actually  mean is  something like  this  that  we have derived it  for  a

reversible process. So, if we are interested to calculate a change in entropy say between

states 1 and 2 ok, so when we are interested to calculate the change in a entropy between

states 1 and 2, how can we use this, we can integrate this equation only along a reversible

path because T dS equal to del Q is valid only for reversible process. So, imagine you

construct a hypothetical reversible path, but the actual process may be irreversible actual

process may be this ok. Normally irreversible processes we show by dotted line in the



process diagram, because the intermediate states are not in equilibrium and they may not

be exactly known.

So, then if you integrate this you will get an expression for S 2 minus S 1. Once you get

an expression for S 2 minus S 1, then you can use it even for the irreversible path right,

so  that  means  that  this  equation  has  to  be  integrated  over  a  reversible  path.  Once

integrated, the final result can be used for any process. So, this is a two step way of

looking into it. It is said that this is true for any this, this can be applied for any process

that is correct, but before applying it for any process conceptually it has to be integrated

over a reversible path. The result of that integration can be used for any process. I hope I

have clarified it, because there is a lot of doubt and confusion of these in the mind of the

students. 

So,  this  you have so with this  assumptions that  is  you know you have only moving

boundary  work  and  neglecting  changes  and  changes  in  kinetic  energy  and  potential

energy. If you have other forms of work, you can have similar T dS relationship with you

know other work terms added with it.  Now, this equation can be written in terms of

enthalpy also. So, U is H minus p V right, because H is equal to U plus p V. So, you can

write in this way. So, you can write this as dH minus p dV plus minus V dp plus p dV. 

So, this p dV and p dV gets cancelled. So, you have the other T dS relationship which is

equivalent is d H minus p dV these V dV. These equations are so popular because you

know just property relationships. You these are combined consequences of first law and

second law. So, you can neither call it you know an expression for first law, you can

neither call it an expression for second law, it is a combined effect of first law and second

law, but this can be used for finding the change in entropy during any process. So, this T

dS, these are called as T dS relationships. 

So, we will apply this T dS relationship to two special cases; one is an incompressible

substance, and another is ideal gas. So, special case incompressible substance; so, for

incompressible substance, the terms dV or dp, these are not important right that there is

no change in volume. So, incompressible substance will mean d V equal to 0. And what

is  dU,  dU is  mass into specific  heat  into change in temperature.  For incompressible

substance that is no distinction between C p and C v, so you can just call this m C dT.



So, you can write dS dS m C d T by T ok. So, if you integrate it between state points 1

and 2,  and assuming that  you know C is  not  a  function  of  T which is  you know a

restrictive  as  assumption  because  for  many  substances  the  specific  heat  itself  is  the

function of temperature. So, this is giving rise to m c ln of T 2 by T 1. So, S 2 minus S 1

is equal to m c l n T 2 by T 1. This is the formula that we can derive for incompressible

substance.

The next example,  so this is special  case number 1. We will  consider a special  case

number 2. Special case number 2 is ideal gas ok. So, for ideal gas you can write an d u is

equal to m c v d T right. And you can write p V equal to m R T. So, p is equal to m R T

by V. So, if you substitute this in the first T dS relationship, you will get T dS is equal to

m C v d T plus m r T by v dV so that means, dS is equal to m C v d T by T plus m R dV

by V that dT gets cancelled out.

So, if you integrate from 1 to 2, state 1 to state 2, and assuming so if you what you know

these assumption of C v being temperature independent is a over restrictive assumption

in most of the cases. So, we will generalize this a little bit, and write S 2 minus S 1 is

equal to m integral of C v dT by T 1 to 2 plus m R ln of V 2 by V 1. This C v in general

for ideal gas is a function of temperature. What is that special case when C v is not a

function of temperature; it is a constant it is called as calorically perfect gas.
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So, for calorically perfect gas C v equal to C v 0 that means, S 2 minus S 1 is equal to m

C v 0 ln this is constant. So, this is from the first T dS relationship. You can alternatively

use the second T dS relationship to get another expression which is in terms of C p. 

(Refer Slide Time: 19:14)

So, for that you use this expression. So, T dS for ideal gas, this will be m C p dT dH

minus V is m R T by p dp. So, dS is m C p T by T minus m R dp by P. So, if you now

integrate it is this, C p is function of temperature in general ok. For calorically perfect

gas, C p is equal to C p 0 equal to constant. This means S 2 minus S 1 is equal to m C p 0

ln T 2 by T 1 minus m R ln P 2 by P 1 ok. So, you have nice expressions for ideal gas

with constant C p, C v.

For non-ideal substances, how do you calculate change in entropy you have to refer to

the property tables. And just like you have internal energy enthalpy are tabulated, you

will also have entropy tabulated. And then you know specific entropy is what is tabulated

that  is  the  total  entropy  per  unit  mass.  For  phase  changing  substance  just  the  same

interpolation rule that you use for specific volume, internal energy, enthalpy, the same

interpolation rule that you can use for entropy, so that is how entropy is calculated, but

these are entropy changes that are calculated that you must remember not the absolute

values of entropy ok. 

The next item that we will consider is that we have so far considered reversible processes

for calculating the change in entropy, but what happens to the change in entropy for an



irreversible. So, change in entropy for an irreversible process, but you know I thought

that  before  entering  into  irreversible  process,  we  will  talk  about  a  special  type  of

irreversible process which will give us a whole lot of insight and that is very common in

most of the thermodynamics cycles that we talk about is reversible adiabatic process.

(Refer Slide Time: 22:59)

So, we will consider a specific example before entering into irreversible process that is

reversible adiabatic process of an ideal gas. So, for an ideal gas, reversible plus adiabatic

if you use, so reversible you can use del Q equal to T dS ok. If it is adiabatic that means

del Q equals to 0. So, T dS equal to 0, and you have T dS equal to dU plus p dV. So, T dS

equal to dU plus p dV reversible and adiabatic is isentropic. 

So, remember you require both reversible and adiabatic to you know set these to 0. And

for ideal gas dU is m C v dT ok. For ideal gas, you have another constraint which is the

equation of state of an ideal gas p V equal to m R T. So, if you now differentiate both

sides p dV plus V dp is equal to m R dT. Now, you can eliminate dT from these two to

get a relationship between pressure and volume for reversible adiabatic process of an

ideal gas.

So, you can write for example you can write dT is equal to p dV plus V dp by m r and

that you can substitute here if you substitute that here you will get let me utilize this part

of the board. Now, 0 is equal to m C v p dV plus V dp by m R plus p dV. So, you will

have you can write this as C v into p dV plus V dp plus R p dV equal to 0. So, C v plus R



p dV plus C v V dp is equal to 0. C v plus R is C p, it does not matter whether it is

constant C p, C v or variable C p C v. Even if C p and C v are variable that difference is

always R. So, you can write now you divide both sides by say p V, p into V. And so you

can write C p by C v dV by V plus dp by P is equal to 0 ok. And C p by C v is called as

gamma, the ratio of specific heats.
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So, we can write dp by p plus gamma dV by V is equal to 0. If you now integrate it, you

can write ln p plus gamma ln V is equal to say some constant ln C, which is constant of

integration, so that means, p v to the power gamma equal to constant. So, it shows that

for reversible adiabatic process you can fit it in the form of a general polytrophic process

p V equal p V to the power equal to constant where n is a very special value here which

is C p by C v. 

Again it does not require C p, C v to be constant. The instantaneous the C p and C v at

that particular state that ratio you can use to define a particular state using this p V to the

power gamma equal to constant. So, this is the proof that for reversible and adiabatic

process p V to the power gamma is equal to constant for an ideal gas. For a non ideal gas

that is not true.

Now, if this is true, we have shown that the work done, this is integral p dV this we have

done during the in the chapter heat and work. So, I am not repeating here. Let us see

consequence  a  very  important  consequence  when  the  substance  is  not  undergoing  a



reversible process, but only adiabatic process. So, the reversible restriction is withdrawn,

but the adiabatic restriction is not withdrawn. So, irreversible adiabatic process or we can

say any adiabatic process may be irreversible or reversible.

So, any adiabatic process, for any adiabatic process, we cannot say dS equal to 0, but we

can say del Q equal to 0; so, any adiabatic process of an ideal gas. So, del Q is equal to

dU plus del W not p dV right, because any means it is not it need not be reversible, it

need not be quasi equilibrium, it could be really any, only assumption is you neglect

changes in kinetic energy and potential energy. So, the heat transfer is 0, because it is

adiabatic dU is still m C v dT ok. So, the work done here you can calculate right. So, can

you express this in terms of r and. So, just to make a parity with this expression this is p

2 v 2 is m r T 2 and p 1 v 1 is m r T 1; so, m R T 2 minus T 1 by 1 minus gamma, no this

one.

Student: (Refer Time: 32:22).

This is minus yes. So, this is m R T 2 minus T 1 by 1 minus gamma. Now, you can

express C v in terms of R and gamma to make a parity of these two. So, how do you do

that it is very simple C p minus C v is equal to R, and C p by C v is equal to gamma

right. So, you can write C p as gamma minus 1 this left hand side is equal to R that

means C v is equal to R by gamma minus 1.

So, can you write these as m R by gamma minus 1 dT right ok. So, if you write that with

a minus 1 to 2, these also gives m R T 2 minus T 1 by 1 minus gamma looks very

surprising even without reversible assumption we have come with an expression of work

which we derived for reversible process right. Here we have not assumed p V to the

power gamma equal to constant. And in fact p V to the power gamma equal to constant is

not true for any adiabatic processes this is true only for reversible adiabatic process of an

ideal gas, but without that we come to an expression which is same as this. Well, there

are two hidden things about it.

The first hidden thing is when we are writing p V to the power gamma equal to constant,

this does not imply constant gamma. This could be even variable gamma. When we are

writing these we are integrating this for a constant gamma right. If gamma is variable,

then you know the integral p dV that variable gamma has to be included. So, this is for

constant gamma. And this is also for constant gamma. So, if gamma is constant that is C



p the ratio of C p by C v which is constant if either C p and C v you mean both are

constant then the ratio is also constant.

Then the eventual expression for work done for reversible adiabatic and only adiabatic

they are the same, but the process expression for reversible  adiabatic,  this  cannot be

applied for any adiabatic process. And this is so generic that this can be applied to a

reversible adiabatic process no matter whether C p and C v are variable or constant, but

only restriction it has to be ideal gas. And here again the only restriction is adiabatic,

ideal gas, constant gamma no restriction of reversible.

So, this is a very interesting thing. In the school level, we do this derivation in the higher

level we come up with the derivation where we use the T dS relationship and where do

this merge where they are I mean equivalent were they are not that has to be clearly

understood. We stop here in this lecture, we will continue with ore discussion on change

in entropy in the next lecture.

Thank you.


