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Today, we will work out some problems related to the Second Law of Thermodynamics.

The first problem is projected here; a cyclic machine, shown in the figure, receives 325

kilo Joule from a 1000 Kelvin energy reservoir. It rejects 125 kilo Joule to a 400 Kelvin

energy reservoir and the cycle produces 200 kilo Joule of work. Is the cycle reversible,

irreversible or impossible? 



(Refer Slide Time: 01:05)

So, let us draw this. So, you have T H equal to 1000 Kelvin. So, I have put all the values.

Given a situation like this, the first thing that you should check is does it satisfy the first

law. So, how do you check whether it satisfies the first law; first law for a cyclic process

is cyclic integral of heat equal to cyclic integral of work. So, here cyclic integral of heat

is Q H minus Q L that is 325 minus 125 that is 200 and cyclic integral of work is 200, so

it satisfies the first law. 

As we have discussed at the beginning of the second law, there could be several devices

which satisfy the first law, but they are not practical, so that is what we are assessing that

despite satisfying first law is it a practical device. So, what is the efficiency of this device

1 minus Q L by Q H right,  so, 1 minus 125 by 325, so this  is  0.615. But,  working

between two given temperature limits, the maximum efficiency is constant by the Carnot

cycle efficiency.

So, eta max that is the reversible one that is 1 minus T L by T H, because for reversible

cycle Q L by Q H is equal to T L by T H by the definition of the absolute temperature

scale, so that is 1 minus 400 by 1000, so that is 0.6. So, the efficiency is becoming the

maximum efficiency, so this is not possible right. Therefore, this device is an impossible

device if some inventor claims that this device is working, then that claim is not valid ok.

We will move on to the next problem. Let me erase the board before, we look into the

problem. 
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A house  is  heated  by  a  heat  pump  driven  by  an  electric  motor  outside  as  the  low

temperature using the outside a low temperature reservoir. So, this is typically a cold

country based problem. So, you have a house, you can see the nice picture of the house

in the diagram. So, this house is there in a very cold ambient. So, to keep this house hot,

there is a heat pump which continuously drives heat into the house, this is normally what

a do meter will do.

So, the house loses energy in direct proportional to the temperature difference between

the house and the surroundings. So, Q dot is K into T H minus T L. What is the minimum

electric power required to drive the heat pump as a function of the two temperatures. So,

let us go to the board and solve this problem. 
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So, I am not a very good artist, so I will draw the house with a block not the nice picture

that is given in the slide. So, this has Q dot H, this is the heat pump. So, now first of all,

so it should satisfy two things first law and second law. So, for the heat pump the first

law implies that cyclic integral of heat equal to cyclic integral of work ok. So, Q dot L

minus Q dot H that is the net heat transfer to it and the net work done is minus W dot in

ok. So, W dot in which you want to minimise to make your heat pump most efficient, so

this is equal to Q dot H minus Q dot L. 

Now, for minimum work input this must be a reversible heat pump that means, Q dot H

by Q dot L is equal to T H by T L. So, W dot in is equal to Q dot H minus Q dot L into,

so Q dot L is Q dot H into T L by T H. And for the house to remain in steady state, the

heat that is supplied is same as the heat that is dissipated. So, Q dot H is same as Q dot

loss, and it is given that Q dot loss is equal to K into T H minus T L. So, this becomes K

into T H minus T L whole square by T H right. This is the minimum work input ok. 

Student:  (Refer Time: 09:03) cycle we have explained that the work output which is

maximized if it is reversible (Refer Time: 09:11).

 It is true that in the context of Carnot cycle, we have you know discussed that the work

output is maximum. In the context of reversible heat pump, the same concept is true, but

you know you have to use your common sense to understand that for a given Q H, what

is that input that you require for a heat pump, the input is work. So, its coefficient of



performance is the desired effect that is Q H divided by the work input.

So, the reversible heat pump will have the based performance that is its coefficient of

performance will be the highest. So, to have the highest coefficient of performance to

have the same Q dot H W dot in should be minimum. So, its a common sense extension

of a reversible heat engine that we can apply to a reversible heat pump or a refrigerator.

For a reversible heat engine, the efficiency is maximum for a reversible heat pump or a

refrigerator the coefficient of performance is maximum the so in both cases in either

cases, it is the performance parameter or performance index ok. 

(Refer Slide Time: 10:51)

Let us go to problem number 5.3. We wish to produce refrigeration at minus 30 degree

centigrade ok. A reservoir shown in the figure is available at 200 degree centigrade and

the ambient temperature is 30 degree centigrade. Thus, work can be done by a cyclic heat

engine  operating  between  the  200  degree  centigrade  reservoir  and  the  ambient

surroundings. This work is used to drive the refrigerator. Determine the ratio of the heat

transferred from the 200 degree centigrade reservoir to the heat transfer from the minus

30 degree centigrade reservoir, assuming all processes to be reversible. 

So, here you can see that in the diagram there is a heat engine and some work of the heat

engine is used to run a refrigerator. The whole understanding of the problem is that there

are many numerical values of temperatures given, which ones corresponds to what. So,

here we have T hot, T ambient, T cold. So, these are the things that we will sort out in the



board. 

(Refer Slide Time: 12:19)

So, let us draw the schematic, so T hot ok. So, let us look into the given conditions. So,

let us complete this is W ok. So, the question is what is Q H by Q L that is the question,

so we have to first understand, what is the question? Then T hot is 200 degree centigrade.

So, 200 plus 273.15 Kelvin ok. T ambient is 30 degree centigrade, so it is 30 plus 273.15

Kelvin. Then T cold is minus 30, so minus 30 plus 273.15 Kelvin. And this is T ambient

which is same as 30 plus 273.15. 

So, you have both are reversible right. So, you have Q H by Q m 1 is equal to T hot by T

ambient. So, you can write Q m 1 is equal to Q H into T ambient by T hot right. So, W is

equal to Q H minus Q m 1 that is cyclic integral of heat equal to cyclic integral of work

ok. So, for this is becomes Q H into 1 minus T ambient by T hot. 
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Look into the heat pump. So, for the heat pump you can write Q m 2 by T ambient is

equal to Q L by T cold. So, you can write Q m 2 is equal to Q L into T ambient by T cold

ok. So, and energy balance says that for the heat pump W plus Q L is equal to Q m 2. 

So, W is equal to Q m 2 minus Q L. So, this is Q L into T ambient by T cold minus 1

right. So, this expression for W and this expression for W, they are the same W right, so

that means, you can write Q H into 1 minus T ambient by T hot is same as Q L minus 1

each  is  equal  to  W. So,  from this  you  can  find  out  what  is  Q  H by  Q  L,  all  the

temperatures are known in Kelvin. So, Q H by Q L is 0.687 ok. So, we will work out a

couple of more problems, let me erase the board. 
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Problem 5.4; consider a Carnot-cycle heat engine operating in outer space. Heat can be

rejected from this engine only by thermal radiation, which is proportional to the radiated

area  and  fourth  power  of  the  absolute  temperature.  So,  this  is  related  to  the  Stefan

Boltzmann’s law of radiation. So, Q dot radiation is some constant K into A into T to the

power 4, where A is the surface area at over which the heat transfer is taking place, so

that for a given engine work output an a given T H, the radiator area will be minimum

when T L by T H is 3 by 4.

(Refer Slide Time: 19:21)



So, let us try to see what are the given data and I will try to draw a schematic of this

problem. So, what is given is Q dot L is K A T L to the power 4, this is what is given.

Also given you have a given T H and given W dot. So, what you have is Q, because it is

reversible, you have Q dot H by Q dot L is equal to T H by T L right. 

And w dots is Q dot H minus Q dot L, here everything is expressed in terms of rate of

heat transfer, because you know the radiation is also expressed as the rate equation. So,

Q dot H minus Q dot L, so you can express it in terms of Q dot L. So, Q dot H is Q dot L

into T H by T L minus 1. And Q dot L is given as K A T L to the power K A T L to the

power 4 ok.

So, A is W dot by K T L to the power 4 into T H by T L minus 1 sorry yes A is equal to

W dot by K A T L to the power 4 T H by yes this is all right yes. Now, because T H is

given you can you know have a different parameter which you want to minimise which

is A into K T H to the power 4, the reason is that in that case we will have W dot by W

dot into T H by T L to the power 4 by T H by T L minus 1. 

So, if you consider T H by T L is equal to x, then the problem is as good as minimize x to

the power 4 by x minus 1 right x to the power 4 by x minus 1 minimize area means

minimize this, so that means d dx of this is equal to 0, so x minus 1 whole square into x

minus 1 into this 4 x cube minus x 4 is equal to 0 right.

So, you have 4 x to the power 4 minus x to the power 4. So, 3 x to the power 4 minus 4 x

cube is equal to 0 that means, because x is not equal to 0. So, x is equal to 4 by 3 ok. But,

you also have to check that the second derivative of this is less than 0 by greater than 0,

because it is a minima.

So, second derivative of this has to be greater than 0, so that please check I am not doing

that trivial algebra here, but just check that if you make a second derivative of this with x

equal to 4 by 3, it indeed becomes positive that means, it is indeed a minimum of the

area are not, maximum of the area. Why minimum of the area is important, because for

making a compact engineering design to achieve a particular heat transfer, you want the

minimum area to achieve that heat transfer. Otherwise, if you increase the area anyway,

heat transfer we will increase. So, the good engineering design is that you achieve the

same heat transfer, but using less area that is why minimising the area is a matter of

concern for this problem. 
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So, we will work out a final problem, before we conclude this lecture, so that is problem

number  5.5.  A Carnot  heat  engine,  receives  energy  from a  reservoir  at  T  reservoir

through a heat exchanger, where heat is transferred proportional to K in to T reservoir

minus T H. It rejects heat at a given low temperature T L. To design the heat engine

maximum work for maximum work output, show that the high temperature T H is square

root of T L into T reservoir ok. 

(Refer Slide Time: 25:51)

So, let us work out this problem. And this is a very interesting problem and I will explain



why it is so interesting from a conceptual point of view. So, this is a this is claim to be a

reversible heat engine, now you may argue that here heat transfer is taking place across a

finite temperature difference right. T reservoir is not same as T H, this is the difference

between this and the Carnot cycle which we discussed in the theory portion of the lecture

that Carnot cycle was considered to be both internally and externally reversible Carnot

cycle.

Now, this is the typical Carnot cycle, where the external universe external reversibility is

sacrificed,  because  you know that  is  the  more  practical  approach where  you have  a

temperature difference across, which the heat transfer is taking place, but internally it is a

reversible  cycle.  So,  this  is  called  as  an  internally  reversible  Carnot  cycle  or  endo

reversible Carnot cycle.

So, still for this cycle you can write Q H by Q L is equal to T H by T L. Remember when

you write Q H by Q L is equal to T H by T L that T H and T L are not this T H and T L

anymore for endoreversible cycle, it is the T H and T L across which the heat transfer is

taking place in the system boundary, this is the adaptation that you have to make, if the

cycle is not externally reversible.

So, you can use because you know this is Q H by Q L equal to T H by T L, so long as

everything within this domain of T H and T L is reversible. And here the domain of T H

and T L is brought down from reservoir to this much. So, within this two, it is reversible.

And therefore, you can write Q H by Q L equal to T H by T L. But, if you write Q H by

Q L equal to T reservoir by T L that will be wrong, because it is externally reversible. So,

this is a very very important concept that you have to keep in mind. 

So, once you write this the net work done W is Q H minus Q L, so W dot is Q dot H

minus Q dot L and Q Q dot L is Q dot H into T L by T H. So, Q dot H into 1 minus T L

by T H. And Q dot H is equal to K into T reservoir minus T H into 1 minus T L by T H

ok. So, then the only variable here is T H right. And what you want for maximum work,

so you want maximum work output. 

So, for maximum work output d W dot d T H should be equal to 0 ok. So, d W dot d T H

should be equal to 0 that means, let us just differentiate this. So, K into 1 minus T L, so

minus K into 1 minus T L by T H plus K into T reservoir minus T H into T T L by T H

square right. 1 by x will become minus 1 by x square, so this is equal to 0. So, minus K



plus K T reservoir T L by T H square, so that becomes equal to so the remaining terms

get cancelled out right, so, this is equal to 0. 

So, your final answer is T H is square root of T L into T reservoir. Again you can check

with the second derivative, if it is less than 0, then only this represents the maximum. So,

we have discussed about various problems, where the processors are either reversible,

both externally and internally or we have discussed about processes which are internally

reversible, but externally irreversible.

The next question that comes to us is that well we can understand that irreversible is

irreversible that means, it is deviated from ideality or reversibility. But, if you have two

irreversible processes, both are deviated from reversible, but how much they are deviated

from  reversible  process,  so  that  means  the  deviation  from reversibility  needs  to  be

quantified. So, in the next lecture, we will discuss about a quantitative parameter that

will  give  us  the  strength  of  irreversibility  that  means,  deviation  from the  extent  of

deviation from an ideal or reversible process.

Thank you very much.


