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Tubular Heat Exchanger Types: Heat Transfer Co-efficient

Welcome. We are now trying to evaluate the heat transfer coefficient and pressure drop

in tubular heat exchanger. Let us quickly look into the configuration or what we have

learned in the previous classes.

(Refer Slide Time: 00:40)

So, we were basically trying to find out the heat transfer coefficient on the sell side,

because already we have talked about the tube side heat transfer coefficient that is for the

internal flow. And now we are trying to look for the external heat transfer coefficient or

the fluid flow, when the fluid flow is taking over the tube and we now want to find out

the heat transfer coefficient for that configuration.

So, this is particularly valid or relevant for the fluid flow over the tubes in the sell side.



(Refer Slide Time: 01:37)

So, there we have trying to find out the, if you remember, in case of internal flow we

have defined the Reynolds number by GD h by mu, where D h is the hydraulic diameter.

And G was the mass velocity given by the mass flow rate per unit free flow area. And

that is how the Reynolds number was defined for the flow, when the flow is taking place,

through the tube inside the tube or we call it internal flow.

Whereas, if you remember that while talking about the external flow or flow over bank

of  tubes,  we  were  looking  for  the  maximum  velocity,  where  it  is  occurring  at  the

minimum frontal area or free flow area. And now we can understand that this has been

done because we wanted  to  calculate  the  Reynolds  number  based on that  maximum

velocity, and we are defining the Reynolds number by rho V x D h by mu, where D h is

the external  diameter of that tube.  And rho is the density mu is the viscosity of that

liquid.

So, this is how we have defined the Reynolds number. So, that justifies our estimation of

looking for the maximum velocity in case of that bundle of flow over bank of tubes.
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So now we will just quickly recapitulate, some of the things that we have learnt in the

earlier class. For the internal flow we have if it is a laminar flow we have this kind of

friction factor. And those friction factor will come in this relation for the pressure drop.

And in case of one in case the laminar flow, laminar internal flow we have the Nessip

number related to the Graetz number and Graetz number is given by this relation. This is

where the flow is laminar and also it is internal flow; that means, the flow is taking place

through the q inside the tube.
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Now, if  we go to  the next  I  mean slide,  this  is  also we have learnt,  that  in  case of

turbulent flow, we find that the friction factor is given by this relation, and this is valid

for this Reynolds number. We have also learnt that for R e greater than 2 into 10 to the

power 4 the friction factor varies like this. We have also told that the Colburn j factor,

which is nothing but the Stanton number into Prandtl, Prandtl number to the power 2

third is equals to this relation, and this is valid for the turbulent flow, turbulent internal

flow through a circular tube.

(Refer Slide Time: 05:14)

So now we will quickly go to the other 2 configurations that we have talked about. While

talking about the external flow, now we are talking about external flow. And this is the in

line arrangement of the tubes, where v is the velocity and we have estimated this V max

to be the frontal area divided by the A min that is the cost 2, this is the minimum area A 1

and finally, it will be given by S T by S T minus D into velocity. So, this is for the inline

arrangement of the tube.

Now, if we look into the other arrangement that is possible.
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I mean that is in the staggered condition, we have seen that the tubes are in this staggered

condition, and if we connect the center between this they will form a kind of triangle. So,

this is what is the tri standard condition, where we have seen that this may the minima or

the maximum velocity, it may occur at this location or it may also it may occur at this

location this is called A 2.

So, we have also learnt if the minima is occurring or the area is minimum at this point or

the  maximum velocity  is  occurring  at  this  point,  we have  the  maximum velocity  is

related to the free stream velocity by this relation. And if the minimum is occurring at

this point, or the maximum velocity is occurring at this point, A 2 we find that the V max

is related to the free stream velocity by this relation.

And one of the criteria for occurring this V max at A 2 we have estimated it to be 2 S D

minus  D  less  than  S  T minus  D,  where  S  T  can  be  related  by  ordinary  Cartesian

geometry. You will be able to relate the S T; S D this is the diagonal pitch. And it can be

related to the longitudinal pitch and the transverse speech by this relation. So, this is up

to this part we have learnt. And now how do we? Once we have calculated the maximum

velocity we can calculate the Reynolds number.

And once we know the Reynolds number we would be able to find out the heat transfer

coefficient.
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There in generally this has been taken from the balanced cryogenic heat transfer book,

the Colvin j  factor  there it  has been related to or it  is  related to  this  relation.  Some

constant  and R e to the  power minus n where this  constant  C and n will  vary as a

function of a S L by D 0 and S T by D 0. Where S T is the transverse speech, D 0 is the

outside diameter of the tube. And S L is the longitudinal pitch and D 0 is the outside

diameter.

So, these ratios are given on this side, and this is where you know S T by D 0 is varying

on this side. So, we have C and n for each configuration. This is valid for number of

rows more than 10; that means, when the flow is taking place like this, you know, we

have n number of n equals to 1 n equals to 2. So, like this we have number of rows and

along the direction of the flow. And it has to be more than 10 at least 10 or more than 10.

So, what happens if the number of tubes are less than 10? Then, obviously, there will be

some kind of correction factor that you have to take in into account. So, we will come to

that part later, but as you can understand that, this are some discrete numbers that I mean;

it is not necessarily that the S L by D 0 will come as 1.125 or S T by D 0 will come as

1.25 or 1.5. So, we may finally, you know depending on the situation or the problem. We

may find that we may have to interpolate some of the numbers.

So, we will now go to this is of course, given for the, if you look at this is given for the

inline tube arrangement or this is where the tubes are just one after the other, ok.
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Now,  what  is  about  the  staggered  condition?  We  will  find  that  for  the  staggered

condition,  now we  have  the  heat  transfer  coefficients  are  correlations  given  for  the

staggered condition. Here also it is the same, I mean it has been given in the form of as a

function of S T by D 0 and S L by D 0. So, here we have some numbers, and here we

have similar numbers for S T by D 0. This is the Colvin j factor, related to the Reynolds

number.

This Reynolds number is based on R e D max. Where this R e D max we have already

learnt, that R e D max is related to the maximum velocity. And we have learnt how to

this is rho V max into D or the external diameter or D 0 divided by mu. And we have

already learned how to calculate the V max. So, this is the correlation given for the 2

banks where there the tubes are arranged in the staggered condition.

So now we will look into as we are talking that this is something like some discrete

position that S L by D 0; say for example, is this number is 0.6 and 0.9. Now if by

chance if something is coming at 0.85 or say it is not defined here. Say let us look into

this position say between 1.25 and 1.5; if someone is finding that his number is 1.4 he

may find it difficult to find out exactly what would be the number for the C and n.

So,  as  an  alternative  we  have  another  I  mean  set  of  correlations  given  in  this  heat

exchanger selection rating and thermal design part by (Refer Time: 13:05).
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We find that here this is defined in as a function of; say, as a rather in as function of

Reynolds  number range different  range of Reynolds  number. And there are  different

correlations for the inline t of arrangements. So, depending on the Reynolds number or R

e max, we will be able to find out what at the heat transfer appropriate Nusselt number

this is related to I mean this correlation is again given by in terms of the Nusselt number.

The earlier correlation was in terms of the Stanton, I am sorry, the Colvin j factor.

Now, here also we will find that this correlation is valid on different the number of rows

and more than or at least number of rows are 10 or more. So, we have to apply that

connection when the number of tubes or layers are rows are less than 10. So, we will

come to that part later. So now, let us look into the configuration where the tubes are

arranged in staggered condition.

So, similarly we have the heat transfer coefficients or correlations given for the, I am

sorry, it is; so, these are the correlations for the staggered arrangement when the tubes are

arranged in staggered condition.
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These  are  the  set  of  correlations  this  is  relating  the  Nusselt  number,  the  Reynolds

number, and Prandtl number, and this is Prandtl number b and Prandtl number w. So,

they are the different, this is Prandtl number b and Prandtl number w. They are different

both are the Prandtl number, but this is evaluated at a bulk mean temperature. This is

evaluated at the wall temperature. So, that is the difference we have in these 2 numbers

and this R e b also again this is evaluated at the bulk mean temperature.

So, you will also find another term here that is C n. Here also we find a number C n. And

in the earlier correlation also you will find that they we have there is a term C n. And that

C n takes care of the number of layers, if it is less than 10 it will be some factor. But if it

is more or more than 10 or equal to 10 then it becomes 1. So, that sound the correction

factor  for  number  of  rows  less  than  10  is  taken  into  account  automatically  in  this

correlations.

So, now if we now we have the correlations available for the tube side. I mean sorry, the

cell  side  where  the  tubes  are  arranged  in  either  in  inline  configuration,  or  they  are

arranged in staggered condition. So, based on this information as we have said earlier,

that we have to now take account of this C n how to estimate this C n, we will now find

that there is a graph where we can correlate this C n, this is C n as a function of number

of tubes.
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So, we see that if the number of tubes are 1, then we have certain kind of C n value for

different R e values also. If the R e value is between 10 to the power 3 and 10 to the

power 2 we have certain kind of correlation. If R e is greater than 10 to the power 3 or

1000, then we have some other kind of relation. Please note that this dotted line is for the

staggered condition. And the continuous line is for the inline condition.

So, if we have the tubes arranged in inline condition, then we should look for this curve.

If they are in the staggered condition, depending on the Reynolds number with either we

look for this curve or we look for this curve. If the Reynolds number is more than 10 to

the power 3, we find that this relation what I mean is this graph will tell you what would

be the correction factor corresponding to number of rows equals to 2, 4, 6, 8, 10. And if it

is more than 10 you can see it is almost reaching to one value. So, if it is a 14 number of

rows, it is almost 1. If it is say about 13 it is 0.99. It is about this point and so on.

So, or it is not only giving it is for 2, 4, 6, 8. The intermediate value can also be taken as

3, 5 also, we can evaluate it at this numbers 9, etcetera. So, depending on the number of

tubes if it is less than 10 or 12, then we can accordingly take care of that correction factor

that  we have to incorporate  within that correlation that has been given in the earlier

slides.

So now we will try to quickly look into a small problem that we can try to solve.



(Refer Slide Time: 20:16)

Here it is saying that atmospheric air is flowing across a bank of staggered tubes and the

number of tubes are 8. So, they are in the, they are arranged in the 8 rows in the along the

flow  direction.  The  diameter  of  the  tube  is  given  the  longitudinal  spacing,  and  the

transverse spacing is also given. The upstream velocity is specified, and it is flowing at a

condition  of  20  degree  centigrade.  So,  if  the  surface  temperature  of  the  tube  is

maintained at 180-degree C, then we are suppose to find out the average heat transfer

coefficient.

So, let us try to solve this problem. So, what are the things, that has been given to us we

already know that  we have some number of tubes.  How many number of layers are

there? Like this we have 1, 2, 3, 4, 5, 6, and we have to add 2 more. So, like this we have

8 number of rolls.  So, 1, 2, 3, 4,,  5, 6, 7 and 8, and the flow direction is this. This

velocity  V is  6 meter  per second. The diameter  of the tube is  already specified it  is

diameter is 1 mm sorry 1 centimeter. And the longitudinal spacing; that means, the centre

to centre this distance is how much? 1.5 centimeter; we have the transverse spacing; that

is, this to this is 2.54. It is not to the scale, and it is looking the smaller dimension is

looking more than this 1, but ee if it is properly drawn. You will find that this is widely

spaced, ok.

And what is given is that this fluid is flowing at a temperature T infinity is the cost to 20

degrees centigrade. And the surface of these tubes are maintained at a temperature of 180



degree centigrade.  So, what we know now try to find out is an average heat transfer

coefficient for this configuration.

So, basically if you look into this configuration, you may find that in a shell and tube

heat exchanger, we may have this kind of arrangement of the tubes and over which the

fluid flow is taking place. And we are interested to find out the heat transfer coefficient

for this configuration. So, for such configuration, often we specify or we supply you the

heat transfer coefficient, but in reality we may have to calculate it. And we now try how

to calculate this kind of heat transfer coefficient.

So now what is the starting point?

(Refer Slide Time: 23:55)

We have already been given that a S L longitudinal pitch is 1.5 centimeter. S T is 2.54

centimeter, and diameter is equals to 1 centimeter. And first of all we have to find out the

fluid properties. We evaluate the fluid properties at 20 degree centigrade. And the density

is 1.2 double 0, sorry, 2 0 4 5 kg per meter cube. Then we have the C p this is equals to

1.005 kilo joule per kg Kelvin. Then we have the viscosity 1.82 into 10 to the power

minus 5 Newton second per meter square. Then we have the Prandtl number equals to

0.713. And the thermal conductivity is equal to 0.0257 watt per meter Kelvin.

And also this is Prandtl number b and evaluated at the bulk mean temperature. And P r

w; that is, the wall temperature that is 180 degree centigrade, this comes out to be 0.685.



So, these are the values we know, the number of rows are 8, and the velocity V is equals

to 6 meter per second. So, with this information now we try to calculate the different

parameters.

What are the different parameters that we have to find out?

(Refer Slide Time: 26:22)

First of all, we calculate the diagonal pitch, that is equals to root over S L square plus S T

by 2 whole square and then square root. So, this comes out to be 1.95 centimeter. Then

we have is D minus D, that is equals to 0.9 5 meter. You can understand why we are

trying to find out S D minus D, because we do not know exactly at what location that

minimum free flow area is there, or we are rather trying to find out where the maximum

velocity is occurring.

So, then we try to find out S T minus D by 2, and that comes out to be 0.77. So now, we

see that S D minus D less than S T minus D by 2 that is the correla I mean condition that

is necessary for the velocity to be maximum at A 2. But this is not getting satisfied,

because 0.95 this is equals to 0.95, and this is 0.77. So, this condition is not true. So, this

is not I mean less than. So, we can understand that the minimum area is occurring at A 1,

and we have to evaluate the velocity V max is equals to S T by S T minus D and V. So,

this will come out to be S T was how much? S T is 2.54, and 2.54 minus 1 into 6 this will

come out to be 9.9 meter per second.



(Refer Slide Time: 28:49)

So, once we know the velocity maximum, maximum velocity then we can calculate the

R e max. And that will be V max rho into rho into V max into D divided by mu, and this

becomes 9.9 multiplied by 0.01 meter is the diameter. And 1.2045 is the density of the

air, divided by the viscosity 1.82 into 10 to the power minus 5.

(Refer Slide Time: 29:49)

So, this gives you the Reynolds number 6549. So, once we have decided the Reynolds

number, we can look for the appropriate correlation if you go back you will find the

appropriate correlation for this condition. And you will find that the Nusselt number the



equals to 0.35 into 0.98, 0.98 is coming for C n, because we have n equals to 8, and

corresponding to n equals to 8, we have to look into that chart and there we will have the

correction factor 0.98, then we have R e to the power 0.6. This is corresponding to an R e

equals to 6549.

So, there we will find that the R e variation is R e to the power 0.6. Then we have P r

evaluated at the bulk mean temperature. That will come at point P r b, P r b to the power

0.36. And then P r b by P r w, that comes out to be 0.25, and then you have is D by s

longitudinal as 0.2.

So, this when you evaluate,  it  comes out to be 66.3.  So,  once we know the Nusselt

number this can be related to h D by k. And we have the value of k we have the value of

b, we can find out the heat transfer coefficient that will come out as 170.4 watt per meter

square Kelvin.

So,  in  general,  that  value  which  we  otherwise  supplying  in  different  heat  transfer

calculations. Now you have learned how to calculate it from different correlations.
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And with that expression of the heat transfer coefficient, we would now be able to find

out I mean different other parameters which are necessary.

Thank you for your attention.


