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Lecture – 35
Acceleration Analysis – II

In this lecture we are going to continue our discussion on acceleration analysis. So, in the

last lecture; we had looked at two examples of constraint mechanisms we are going to

discuss on this further and take examples of constraint mechanisms as well as robots.

(Refer Slide Time: 00:38)

To give  you  an  overview  of  today’s  lecture  we  are  going  to  discuss  the  analytical

acceleration analysis problem with examples of 3R1P chain of type 2 and 2 our open

chain planar manipulator.
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Let us review the things we had discussed before we know that a mechanism transforms

the actuator input motion to the motion of the output link. Now motion as we know is

characterized by displacement  velocity  and acceleration and in these lectures,  we are

now discussing the acceleration part. We have already discussed the displacement and

velocity analysis of mechanisms and robots.

This acceleration analysis will now require the displacement and velocity analysis as a

starting  point,  now acceleration  analysis  is  non-intuitive.  So,  we have discussed this

point let me reiterate once more you know that when a particle is moving on a path the

velocity of the particle at any point on the path is tangential  to the path the velocity

vector is always tangential to the path.

However, the acceleration vector does not have any such restriction. So, I am showing

the acceleration at 2 points at 2 instance of a particle moving on a curved path. As you

know that this has 2 components the acceleration has 2 components one is tangent to the

path  the  other  is  normal  to  the  path.  The  tangent  acceleration  if  you call  it  a  t  the

tangential component of acceleration goes on to change the magnitude of the velocity

which means it changes the speed.

And the normal component is because of the path curvature. So, the normal component

of acceleration in this case is because of the path curvature. So, acceleration can have an



arbitrary direction for a particle moving on a curved path, there was an another example

that I discussed. 
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And that is of a disc that is rotating at a constant speed and a particle that is moving with

respect to the disc also at a constant speed let us say.

So, even though speeds here are all  constant the angular speed is constant the linear

speed  of  the  particle  with  respect  to  the  disc  is  constant  the  particle  still  suffers

acceleration  and this  is  the cariole  acceleration  as you know. So, the particle  suffers

cariole acceleration. So, therefore, the acceleration analysis is non-intuitive. 
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Now, the motivation for; that means, doing x acceleration analysis is that it is connected

to dynamics. For example, Newton’s second law relates the acceleration of a particle or a

rigid body center of mass of a rigid body to the forces acting on the particle of the body.

There is another requirement that we have and that is the kinematic requirement on the

input output motion.

So, here we have this transfer device, which I might require to have constant speed while

it goes from the sitting to the standing position ; in that case not only the velocity of

expansion of the actuator  is important,  but also the acceleration of expansion is also

important. 

So, if I want to produce a certain acceleration or possibly 0 acceleration at the output, I

may require a non-0 acceleration at the input. So, this is what we need to find out. So, we

want to find out a relate the output acceleration with the input acceleration. 
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So, the acceleration analysis problem is about relating the actuator acceleration in input

with the acceleration of the output link. And we are given the displacement and velocity

relations. So, we will start with these as inputs. 

(Refer Slide Time: 07:05)

So, as we have discussed before our plan is to first discuss the constraint mechanism and

subsequently go over to robotic manipulators. So, we will discuss the example of a 2R

open chain planar manipulator. 
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We will start with the acceleration analysis of a 3R1P chain of type 2, we have discussed

this point before that for a 3R1P chain of type 2 here we have the offset. 

(Refer Slide Time: 07:51).

So, this is the distance between the 2 revolute pairs connected to the ends of the links

with the prismatic pair. So, here we have the prismatic pair and these are the 2 revolute

pairs  connected  to  the links  which are connected  through the prismatic  pair. So,  the

distance  between these 2 revolute  pairs  measured in  a  direction  perpendicular  to the

direction of the P PR is the offset now this angle let us say alpha is a constant. 



So, therefore, I can consider an equivalent 3R1P chain with this angle being 90 degree.

The reason we are doing this is that it simplifies certain expressions, and we can always

go from one chain to the other. So, if I know the velocity acceleration analysis of the

chain on the right I can always re-compute the velocity and acceleration of the chain on

the left. 
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So, therefore, we are going to analyze the chain shown on the right we are given the

displacement relations.  So, we already know the displacement  relations  we know the

angle theta 2 and s. So, if I if you are given theta 2 we can find out s and vice versa. We

also  know the  velocity  relations  so essentially, we know this  relation,  we know the

velocity relation what we have to find out is the acceleration relation. So, this is what is;

our objective in this lecture to determine the relation between theta 2 double dot and s

double dot. 
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So, we will start off with the analytical velocity relation which we have derived earlier

further for this chain. I have mentioned that this is the angular speed at the output link

and the angle and the linear speed at the input of the prismatic pair. 

So, essentially this distance which is s we know the rate at which this link is sliding out

of the prismatic pair. So, this is s dot so I know the rate at which this link is sliding out of

the P pair and that relation is given here this relation we have derived earlier when we

discussed the velocity analysis. 
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So, if you differentiate with respect to time both sides of this velocity relation you will

obtain this acceleration relation. So, on the left I have the acceleration at the output and

on the right, I have a term where I have the time derivative of the Jacobian and the rate

of expansion of the actuator; and a term which involves the acceleration of expansion of

the actuator. 

Now, once again this Jacobian is a function of s and theta; therefore, the time derivative

of Jacobian can be obtained easily using chain rule. So, del J del s s dot plus del J del

theta  theta  dot now you will  observe that  theta  dot is nothing but J times s  dot.  So,

therefore, this expression can be rewritten by taking s dot out in this form.

Finally, if you substitute this expression of J dot in here, you will obtain the expression

of theta double dot. So, this expression relates the angular acceleration of the output link

with the input acceleration and velocity of the prismatic pair expansion. 
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So, let me show this formally. So, this is our final expression that we have.



(Refer Slide Time: 14:45)

So, let me rewrite these expressions and determine what is del J del theta 2 and del J del

s. So, these are the relations which can be easily obtained from here by differentiate

differentiating with respect to s, I have del J del s and with respect to theta 2 I have this

expression of del J del theta 2. 

Now, what we observe here is that the acceleration relations are linear. So, between theta

2  double  dot  and  s  double  dot  I  have  a  linear  relation;  however,  this  relation  is

inhomogeneous. Because of the presence of this term which is configuration and velocity

dependent. So, this is the inhomogeneous term which depends on the configuration and

the rate of expansion of the actuator the velocity of expansion of the prismatic actuator. 

Furthermore, if I want to move the output at a constant speed; in other words, if I want to

have theta 2 double dot as 0 which means the output moves at a constant speed, I must

have acceleration at the input and that is obtained in this form. So, this is the acceleration

that I must have at the input in order to produce a constant output acceleration. 
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Similarly, if I have the input as a constant which means if s double dot is 0; that means,

that prismatic actuator is expanding at a constant rate; in that case I have acceleration at

the output. If I am moving at a constant if I have the prismatic actuator expand at a

constant rate which means s dot is constant, then the output has a angular acceleration. 

(Refer Slide Time: 18:32)

Next let us look at the acceleration analysis of a planar 2R manipulator. So, here I have

shown a 2R manipulator which is moving at a certain configuration it is moving with



velocity  theta  one dot  theta  2 dot  and acceleration  theta  one double dot  and theta  2

double dot. 

So, this has a velocity of the end effector as xE dot yE dot and an acceleration xE double

dot and yE double dot. Now the configuration of the manipulator is specified the velocity

is specified we need to relate the actuator accelerations the joint accelerations and the

end effector accelerations. 
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So, here I have written out the velocity relations which we have already derived earlier.

Now if you assemble them in this form we have the relation of the end effector velocity

and the joint velocities through the Jacobian which we have discussed.
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This can be written in a compact  form as shown here,  where xE dot this  is  the end

effector velocity vector and this theta dot vector is the joint velocity vector. 

(Refer Slide Time: 20:46)

Now, if  you differentiate  this  velocity  relation with respect to time as we have been

doing. So, we will obtain xE double dot is equal to the time derivative of the Jacobian

remember that the Jacobian is a function of the configuration. So, time derivative of the

Jacobian times the joint velocity vector plus Jacobian matrix times the joint acceleration

vector. Now this Jacobian derivative is now a little more complicated. 
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So, we are going to look at that, here I have written out this the derivative of the end

effector velocity which gives us the end effector acceleration. 
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And the derivative of the Jacobian is the derivative time derivative of individual entries

of the Jacobian; remember that the Jacobian has these entries. 

So, if you calculate for example, J 11 dot then you have minus l 1 theta one dot cosine

theta one I am writing c theta one in place of cosine theta one and minus l 2 theta one dot

plus theta 2 dot times cosine theta 1 plus theta 2. So, that is j 11 dot similarly you can



write J 1 2 dot which is nothing but minus of l 2 theta one dot plus theta 2 dot times

cosine of theta 1 plus theta 2. 

In this manner you can find out all the time derivatives you can find out J 2 1 J 2 2 dot J

2 1 dot and J 2 2 dot etcetera. So, these are straightforward, but now the expressions are

little complicated a little lengthy. So, these expressions go into this J dot and then we

have  the  relation  between  the  input  or  the  joint  accelerations  and  the  end  effector

acceleration.

So, here again we find that in terms of acceleration these relations are linear, but there is

this term J dot theta dot which makes this relation inhomogeneous. Now in this case of

robot  manipulators  the  acceleration  analysis  has  one  more  significance.  We  have

discussed this path generation problem and we have found that in the path generation

problem when the manipulator moves close to the singular singularity or the singular

configuration, then the input velocities can have very high values the reason being the

inverse of the Jacobian becomes goes close to singularity; which means the entries of the

inverse of the Jacobian becomes very large the entries become very large.

There in the inverse expression in the expression of the inverse of the Jacobian we have

the determinant of the Jacobian sitting in the denominator. So, when this denominator

goes to 0 that is when the Jacobian becomes singular the terms in the inverse of the

Jacobian they become very large, because the denominator is going to 0. And hence, the

required  input  velocity  to  generate  the  finite  output  velocity  becomes  very large  the

required input velocities or the joint velocities become very large.

Now, if the joint velocities become very large; that means, this will has have very high

accelerations. Now very high joint accelerations would require very high torques on the

part  of the motor this needs to be restricted.  So, any motor will  have a finite torque

producing capacity or torque specification it cannot produce talked more than a certain

value.

Furthermore,  if  you do not  want  to  damage  the  motors  you would like  to  have  the

accelerations restricted to certain values. So, therefore, from the acceleration expressions

we can now find out what will be the required joint acceleration near singularity and we

can possibly taper the acceleration. So, in order to understand how we should restrict



accelerations and what effect it is going to produce on our output motion; we need this

acceleration expression which we have derived here.

So, if you want to restrict the joint accelerations to within certain range, then you can

correspondingly calculate what will be the acceleration on the end effector. So, this will

accrue certain errors and you can estimate those errors. 
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So, the key points of our discussion in this lecture we have derived the analytical input

output acceleration relations, they are found to be linear, but in homogeneous we have

looked at the role of the inhomogeneous term which is speed dependent. 

And we have also discussed the generation of constant output speed constant and the

corresponding acceleration at the input that is required to produce constant output speed.

And we have also seen that if I have a constant input speed then we have acceleration at

the output and we can calculate all these things from our acceleration relations.
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So,  to  summarize  we  have  looked  at  the  acceleration  analysis  problem  using  the

analytical approach we have looked at this samples of 3R1P chain of type 2 and a 2R

open chain planar robot manipulator. 

So, with that I will conclude this lecture.


