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Path Generation Problem

We have been discussing  about  the  velocity  analysis  of  robot  manipulators  we have

looked at open chain and closed chain robot manipulators. So, the problem of velocity

analysis is to relate the actuator velocities to the end effector velocities. Today, we are

going to look into the problem of path generation.

(Refer Slide Time: 00:45)

So, to give you an overview of what we are going to discuss in this lecture, we are going

to look at  the path generation  problem using the velocity-based method.  We look at

examples of the RR open chain planar manipulator and 3 RPR closed chains in planar

manipulator.
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So, as I have mentioned that the velocity analysis problem in the case of robots is also

closely related to the path generation problem.

So, given the actuator  rates are the rates at  which the actuators  are expanding on or

rotating we can find the path that the end effector takes. So, given the actuator rates we

can find out the path of the end effector. So, that is the forward problem the inverse

problem which is very relevant for various applications is the path generation problem in

which for a given path of the end effector; we have to find out the rate of expansion of

these actuators. So, that is the inverse problem which is the path generation problem.



(Refer Slide Time: 02:23)

We have discussed briefly what is the path generation problem now the path generation

problem has 3 components in it let us go through them one by one. First is the path

planning  of  the  end  effector  in  the  ground  frame  which  means  that  given  this

configuration.  For example,  this  excavator  I  would like to know in a  certain  ground

reference frame what is the path that I desire.

So, essentially is the representation of the path now this representation of the path will

take into account for example, obstacles which might be present or it might be that there

is a bin on which this must be dropped in that case it might go something like this. So,

based on our requirement we have to first plan the path in the ground reference frame.

The second point is the specification of velocity on the path. So, if I have to generate this

path how do I generate I specify the velocities that I desire for the end effector on this

path something like this once I have the end effector velocity at every point on the path I

transform that velocity back to the joint space. So, essentially, I find out the actuator

rates to produce the corresponding end effector velocity. So, that is the plan of this path

generation problem. So, that is how this will proceed.
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So, we will look at open chain and closed chain manipulators.

(Refer Slide Time: 05:23)

So, this is the problem of path generation. So, essentially this is the second and third part.

So, what we have is we have the path already specified or determined.

Now, we have to specify the velocities at each point on this path. So, we are given the

end effector path in terms of xE and yE as a function of time. So, these are specified. So,

as  a  function  of  time  I  know  how  xE  and  yE  build  we  have  to  determine  the

corresponding joint trajectory of the joint velocity.
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So, the way we will proceed is that given the path we can differentiate at every point and

determine the velocity; The velocity of the end effector at a specific point on the path.

So, here we can differentiate and find out the velocity as a function of time and using the

velocity analysis we are going to determine the joint velocity which comprises in this

case as theta one dot and theta 2 dot.

(Refer Slide Time: 07:31)

So, let us review what we had discussed in the velocity analysis problem. So, we were

given the displacement relations.
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Then differentiating the displacement relations we arrived at the velocity relation input

output velocity relation.

So, on the left I have the end effector velocity vector and on the right, I have a relation

through the Jacobean to the joint velocity vector. Where the elements of the Jacobean for

the 2 are manipulator has been written out this we have discussed already.

(Refer Slide Time: 08:34)

So, we had these relations and finally, we obtained the velocity relations in the forward

kinematics  forward  velocity  analysis  and  this  is  the  velocity  relation  in  the  inverse



velocity relation. So, this is the inverse velocity relation and this is the forward velocity

relation.

So, we have noted that in the inverse velocity relation we required the inverse of the

Jacobean  and  the  inverse  of  the  Jacobean  has  this  denominator  term  which  is  the

determinant  of  the  Jacobean.  So,  this  determinant  must  be  non-0  in  order  for  the

Jacobean to be invertible.

(Refer Slide Time: 09:35)

So, this is our inverse velocity relation now let us look at the example of a straight-line

path generation. So, here I have 2 points xo y o and x f yf.

And I would like to connect them by a straight line. Now, every path planning problem

can be considered to be a specialization of this problem because any path can be thought

of as straight lines between infinitesimal points. So, if I can find this then I can generate

any  path.  So,  let  us  look  at  this  straight  line  path  generation  first  we  are  going  to

represent the path.

So, the first problem will be to represent the path you can really very easily represent this

xE and yE at any point on the path as a function of time so, here since we start with x

naught. So, this is the x coordinate of the end effector. So, we start at x naught and we

move linearly in time because of this additional term. So, you can see at time t equal to 0



I am at x naught and similarly at time t equal to 0 I am at y naught this path has to be

traversed in time t f.

So, essentially this time goes from 0 to t f. So, at time t equal to 0 I am at x naught y

naught at time t f when t is equal to t f then this factor becomes one. So, this is x naught

plus x f minus x naught. So, that becomes x f similarly y E becomes y f. So, at time t

equal to t f we are at the final point x f y f.

(Refer Slide Time: 13:03)

So, if you differentiate this function then you have the velocity expression. So, this is the

velocity  of  the  end  effector  point  in  the  Cartesian  coordinate  in  the  ground  based

Cartesian coordinate system. So, this is the velocity that we are going to use. So, once I

have the velocity now I can very easily. So, I have the right-hand side here this is the

right-hand side.

The velocity of the end effector point from the right-hand side of this inverse velocity

relation and through the inverse Jacobean I obtain the joint velocity rates. So, joint it is

joint velocity vector.
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Now, there is  this  inversion problem of  the  Jacobean as we have seen here.  So,  the

inverse of the Jacobean has this determinant of the Jacobean sitting in the denominator.

So, we must ensure that the determinant of the Jacobean is non0,but there are instances

where this might go to 0 or if this might go very close to 0.

So, let us look at this situation what we have here let us say a manipulator which traverse

this path up to this point.  So, this manipulator moved from configuration one to this

configuration  2 the black configuration  now here as  you can see that  this  angle  has

straightened out. So, this angle theta 2 is roughly 0 degree.

So, this is theta one measured from the x axis and theta 2 is the angle made by the second

link with respect to the first link now here theta 2 is roughly equal to 0 and we have

discussed that the Jacobean is singular when the determinant goes to 0 which in this case

it is because theta 2 is almost equal to 0 or 0 at this configuration.

So, in that case the determinant of the Jacobean vanishes and therefore, the Jacobean is

no  longer  invertible.  So,  this  is  a  singular  configuration  now when  the  manipulator

passes through a singular configuration there are various possibilities in the sense that I

can generate this path, if this path is such that is it passes through the. So, this point let us

say on the path the manipulator passes through the singular configuration and the path

then again comes inwards as you can see the manipulator is completely extended.



So,  this  point  on the  path is  actually  on the  boundary of  the workspace.  So,  this  is

roughly the boundary of the workspace which we have discussed before. So, this point of

the path lies on the boundary of the workspace. So, therefore, the manipulator goes to a

singular configuration at this configuration if you want to proceed further on the path

which again actually  comes into the workspace as you can see it  touches  the works

workspace boundary and then again comes inward into the workspace.

So, therefore, it can be continued. So, at the workspace boundary either you can actuate

theta one or you can just actuate theta 2 which means that one actuator can be held fixed

the other actuator can be moved.

(Refer Slide Time: 18:57)

In order to produce a velocity which is tangent because at this boundary point we need to

generate a velocity vector of the end effector which is tangent to the path and since this is

also the boundary. So, it will be tangent to the boundary.

Now, once you cross then you can come again to a configuration like this. So, you can

move from a configuration which I have shown in blue. So, you can move from the blue

configuration through the black configuration to the red configuration. There is another

possibility that you can move when you go past the singular point you can move to the

configuration like this.



So, this is also a possibility that the angle theta 2 here it was negative goes to 0 and then

again goes to negative or theta 2 was negative goes to 0 and flips to the positive side in

the brown configuration as you can see here. So, there is a flipping of configuration

through the when the manipulator passes through the singular configuration.

Now, usually near the singular configuration because the Jacobean is. So, ill conditioned.

So, we have these numerical problems we have numerical problems because the inverse

of the Jacobean will involve very large quantities and therefore, once you have very large

quantities sitting in the inverse of the Jacobean. Then the joint velocities become very

high this can may not be supported by your actuators the actuators may not be able to

produce such high joint velocities.

So, you always face a problem. So, the path has to be planned initially such that it does

not go very close to a singular configuration of the manipulator if at all it is required that

the path has to go very close to the singular configuration then the inverse problem has to

be  solved carefully. It  you have  to  put  additional  constraints  on  the  velocity  of  the

actuators or the actuator rates. So, that your motors or actuators do not get saturated.

In that case you lose on the path or you can lose on the velocity that you desired on the

path. So, there is a trade off if the path is too close to a singular configuration then you

will lose accuracy on that path.

(Refer Slide Time: 23:24)



Now, let  us look at the closed chain 3 RPR manipulator  here this  manipulator has 3

degrees of freedom we are specified the velocity of the end effector point the velocity

trajectory of the end effector point through xE dot yE dot and phi dot.

So, phi dot. So, phi is the orientation angle and xE and yE are the positional coordinates

in the ground based cartesian coordinate system what we need to find out is the actuator

expansion rates. So, this vector s 2 dot s 4 dot s 5 dot. So, here are the actuators you need

to find out their expansion rates for a specified end effector trajectory or velocity. So,

once given the end effector  trajectory we can always determine  or calculate  the end

effector velocity.

(Refer Slide Time: 25:05)

So, let us recapitulate what we had discussed about the velocity analysis problem for this

manipulator we have these displacement relations in terms of the coordinates of point A.

So, here we have point a. So, we have related the coordinates of point A in terms of the

end effector coordinate and the orientation angle phi.

Similarly, the coordinate x B y B they are related again to the end effector coordinates

and phi now if you time differentiate these relations you will get the velocity relations

which you use in this set of 3 equations which relate to the actuator expansion. So, once I

differentiate these relations with respect to time and use the velocity relations that I have

here.
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Then I obtain the velocity  relations  between the end effector velocity  vector and the

actuator expansion rates.

(Refer Slide Time: 26:55)

So, here we have defined the Jacobean which relates the actuator expansion rate and the

end effector velocity vector here this is quite straightforward because we will have the

end effector velocity vector already specified through the path.

So, this vector on the right X E dot will be specified this is known to us given the path.

We can find this vector once we plan the time of motion therefore, we can directly find



out the expansion rates of the actuators now here again the Jacobean which might look

very simple, but these P1 P2 P3 Q1 Q2 Q3 and R1 R2 R3 they have certain denominator

terms which might go to 0 and make the Jacobean singular.

(Refer Slide Time: 28:26)

So,  let  us look at  one of these singular  configurations  here I  have drawn a singular

configuration or a configuration very close to singularity. This manipulator is very close

to singularity because the output link and this actuator angle this angle let me call this

alpha is very close to 0.

Now, why this is singular because when alpha is exactly 0 it is a singular configuration

and  this  configuration  that  I  have  drawn is  very  close  to  singularity  now why  this

configuration is close to singularity or when alpha becomes 0 y is this singular the reason

is imagine that I have fixed these 2 actuators. So, this point gets fixed this point gets

fixed.

Now, this output link can only rotate about point a point a is fixed now this end effector

link can only rotate about point a now who prevents the rotation the this actuator this set

of links this should be able to constrain the output link. So, that it cannot rotate; however,

when alpha is 0 when alpha becomes 0 this part this leg of the manipulator remember it

can only apply force along the actuator this leg of the manipulator can apply force only

along the actuator it cannot apply any force perpendicular to the actuator.



In other words, this actuator cannot prevent any rotation of cannot prevent any rotation

of the output link about point A. So, therefore, when alpha is equal to 0 the rotation of

the output link cannot be prevented by this actuator S4. So, therefore, there will be some

rotation. So, the manipulator gains a degree of freedom why because it can rotate though

with  very  small  amounts  there  is  a  possibility  of  very  small  rotations  you  cannot

constrain the output link using S4 when alpha is equal to 0.

So, therefore, this is the typical gaining of degree of freedom in mechanisms at singular

configuration which we have seen even for constraint mechanism it gains degrees of

degree of freedom at the dead center or singular configuration. So, that is this is precisely

the situation here.

So,  we have a  singular  configuration  of a  parallel  manipulator  at  the dead center  or

singular configuration of the manipulator.
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So, we have looked at the path planning problem. So, once you have the path which is

planned based on obstacles that might be there you plan a path of the end effector you

determine the velocity and the acceleration profile on the path you may have joint and

actuator limitations.

So, joint limitations because of physical construction actuator limitations because it may

not the actuator may not be able to produce very high velocity or very high acceleration



remember  that  since we are determining the joint  velocity  based on the end effector

velocity.  So,  the  joint  velocity  can  change  very  quickly  very  close  to  the  singular

configurations as we have seen. So, we can we can have very high joint velocities and

therefore, we will require very high acceleration.

If you require very high acceleration then production of very high acceleration depends

on the torque restrictions of the torque or force restrictions on the of the actuators. So,

near the singularities the motion planning is tricky. So, it will have very high actuator

velocities and accelerations. So, you need more considerations or restrictions on the joint

motion near singularities now once you have restrictions you will  have errors on the

path. So, initial path planning has to be done carefully.
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So,  to  summarize  we have looked at  the path generation problem using the velocity

analysis  problem.  We have  looked  at  two  examples,  one  is  of  the  open  chain  2R

manipulator and the other is the closed chain 3 RPR manipulator. So, with that I will

conclude this lecture.


