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Lecture – 18
Displacement Analysis: Closed Chain Robot – I

In this lecture, we are going to look at the displacement analysis problem of closed loop

parallel manipulators.
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So, to give you the overview of what we are going to discuss in this lecture, we are going

to look at the displacement analysis problem of closed chain manipulators, problem of

forward  and  inverse  kinematics  of  a  2R-RPR parallel  manipulator  with  2  degree  of

freedom. So, here we have a nomenclature which I am going to explain.
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So, what are closed chain robots? They are also known as parallel manipulators. So, what

are these? Closed chain robots. In normal robots as we have an idea of we talk of serial

chain manipulators. So, for example, my hand you can consider is a serial chain why do

we consider this as serial chain? Because the actuators and the joints, they appear serially

in the chain. So, this is the chain of my hand; so, here there is one actuator joint which is

actuated,  here  is  another  joint  which  is  actuated  and  they  come serially.  In  a  serial

manipulator therefore,  the end-effector which is my hand is connected with the links

through these joints in a serial manner.

As opposed to this in a parallel manipulator, we have all the links which are actuated;

connected to the end-effector directly parallely. So, that is why you also use this term

parallel manipulator. So, all actuators are connected parallely to the end-effector. So, here

I have this example of exechons parallel kinematic machine which is actually used for

machining operations. So, let us understand why this is a parallel manipulator; here you

can see this is one actuator. This is the second actuator and underneath; this is the third

actuator  and all  these actuators  are connected to the end-effector, so this  is  the end-

effector.

This is the end-effector where the machining tool or the gripper will be connected. So, all

these actuators parallely connect to the end-effector and as you can very easily see that

there are no singular links as expected in a closed chain closed kinematic chain. So, there



is no singular link no link with only one kinematic pair. So, we have a closed chain robot

in which all actuators connect parallely to the end-effector.
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So, as per our plan we have discussed open chain thinner robots previously. So, in this

lecture, we are going to start with closed chain planar robots. 

(Refer Slide Time: 04:45)

So, there can be various kinds of chains, let me explain this nomenclature and draw out.

So, we have one link which is ground and the other link which is the end-effector. Now

in this nomenclature like 2R dash 3R; this 2R stands for one of the legs of this parallel



manipulator. So, therefore, this leg the 2R leg is like this. So, RR. So, you have R here

and R here and the other leg is a 3R leg and this one is your end-effector.

So, if you want to calculate the degree of freedom. So, this ground is 1, 2, 3, 4, 5. So,

number of links 5 number of joints 1, 2, 3, 4, 5 and summation of degree of freedom of

each joint, since, they are all revolutes; there are 5 revolutes. So, summation of degree of

freedom is 5. So, therefore, degree of freedom is 3 times number of links minus one

minus 3 times number of joints plus summation of degree of freedom of each joint. 

So, this turns out to be 2. So, this has 2 degrees of freedom. So, that is why this is a robot

there is no longer a constraint mechanism. So, it will require 2 joints to be actuated. So,

possibly this joint and this joint. So, the 2 ground revolute pairs can be actuated. So, 2

joints will be required to be actuated.

RPRPR; the next chain. So, once again we have a ground and an end-effector link. So,

we have R and P which is here it is welded. So, RP and the other leg is RPR. So, this is

the RPR leg here also you can calculate the degree of freedom it will turn out to be 2 the

next chain is 2R-RPR which we are going to study.
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So, this is the 2R-RPR which also has 2 degrees of freedom as you can easily check. 
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Now we have two kinds of problems as you know the forward kinematics problem in

which the actuator inputs are given we have to find out the output; output is the end-

effector  position  or  position  and orientation  depending on degree  of  freedom of  the

chain.

So, an inverse kinematics problem for a specified output; that means, the position and

orientation of the end-effector adjust the position of the end-effector, we have to find out

the actuator input or inputs. So, in this RPR PR; so, here we have this R R RPR, so this

actually is RR RPR chain. So, we are going to discuss the forward kinematics problem of

this RR RPR chain. 

So, here you have RR RPR and the forward kinematics problem we are specified theta

which is this angle and the throw of the prismatic actuator which is this length which is S

4. So, we are given theta and S 4 these are to be actuated we have to find out x E and y E

which are the coordinates of the end-effector point we have to find this in the forward

kinematics problem.
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So, let us look at how we go about doing this. So, the point B here you see we have this

point B whose coordinates you can now very easily find out is l 2 cos theta which is the

coordinate of point A. So, this is the x coordinate of point A plus l 3 cos phi of this angle

phi is an orientational coordinate. So, this gives the orientation of the end-effector link

with the datum; the x axis. So, that is phi; so, I relate the coordinates of point B in terms

of theta and this phi I have brought in this additionally which I will show you how to

calculate. So, the first term l 2 cos theta is the x coordinate of point A plus l 3 cosine phi

is a this projection. So, that is the x coordinate of point B the y coordinate of point B; this

is the y coordinate of point A and to that I add the y projection of a B that is l 3 sine phi

this is l 3 sine phi and this is l 3 cosine phi.

And we have this coordinates of point Q as l 1 comma 0.
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Therefore the length S 4 I can express. So, S 4 square is nothing, but x B minus x Q

square  plus  y  B  minus  y  Q  square.  Now  if  you  substitute  these  expressions  the

coordinates of point B and Q, then you come to this expression and when you open, this

up and arrange the terms then you can simplify this equation remembering that we are

given theta and S 4 and the unknown here in this equation is phi we are given theta theta

and this S 4 the only thing that is unknown is phi therefore, I can assemble this equation I

can simplify this equation and assemble it in the form.
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Some A sine phi plus B cosine phi equal to C which you can easily do where you will

find that this A, B and C are completely known because I know theta and I know S 4. So,

therefore, A, B and C are completely known to me; so, what is unknown is phi which I

need to solve from this equation.

So, I need to solve this equation in order to find phi as discussed previously.
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We will take this approach which can be very easily programmed on a computer and you

can get all the solutions of this equation A sine phi plus B cos phi equal to C. So, in that

we make a definition x equal to tan phi by 2 and represent sine phi and cosine phi in

terms  of  x  which  when  substituted  into  our  master  equation  finally,  gives  us  this

quadratic equation in x whose roots, we can now easily find out and hence we can find

out tan phi by 2 and that is what we are going to do.
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So, the solution solutions of this quadratic equation you have these two solutions given

by these 2 signs positive and negative.  So, we get two solutions of x and hence two

solutions of phi A, B and C are completely known. 
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So, therefore, we have this tan phi by 2 expression in terms of A, B, C, these are the 2

solutions once again you need to use this 8 and 2 function. So, that you get the correct

quadrant of phi one and phi 2.



And finally, what we set out to calculate was the coordinates of this end-effector. So, x E

and y E. So, x E x coordinate of the end-effector is l cosine theta which is nothing, but x

coordinate of point A and this part the second term in the expression of x E which is l 3

plus D cosine phi is nothing, but the vector a E the x coordinate of the vector a E. So, I

will  be I  will  write  it  like  this  that  this  is  the x coordinate  of a E.  Similarly  in  the

expression of y E you have l 2 sine theta which is the y coordinate of a and the second

term is nothing, but the y projection of this a E which is l 3 plus d sine phi.

So, this is l 3 plus d sine phi and this is l 3 plus D cosine phi. So, that is x E and y E. So,

we have obtained the coordinates of the end-effector point E let us understand.
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The solution graphically remember that we are given theta and S 4. So, therefore,. So,

theta and S 4 are given. Now if you see when theta is given then this point A gets fixed

what is not fixed is phi because this hinge be on the end-effector link can rotate on this

circle while the hinge be on the actuator arm on this on this other leg can rotate on this

circle.

So, the way to assemble the mechanism is where these 2 circles intersect for example,

this is one intersection point. 
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So, you have one configuration that is already shown there is another solution, this is

given  by  this  your  hinge  B  can  also  lie  here.  So,  therefore,  the  mechanism  in  this

configuration will look like this. So, in the red configuration because point A is fixed

remember because theta is given since theta is specified a gets fixed and hence you have

another assembly mode of this mechanism as shown by this red configuration. So, these

are the 2 solutions.
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Now, let us move on with the. So, this is the RR RPR manipulator and we are going to

study the inverse kinematics of this chain. 
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Now here we are given the coordinates of the end-effector and we are to find out the

inputs; the actuator inputs which are given by theta and S 4. So, here I have written out.
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The forward kinematic solution you remember we are derived these expressions of x E

and y e. So, we start with the forward kinematic solution or relations if I take this term.



So, so what I am given I am given this x E and y E. So, these are known to me x E and y

E are known to me what I have to find out is theta let us say the first thing is theta.

So, from these 2, I can eliminate phi and this is what I have done in the next step. So, I

have taken these terms to the left hand side and squared and added them to eliminate phi.

So, phi is completely eliminated in this equation. So, what I am left with we have in this

equation x E and y E which are completely known and what is not known is theta. 

Now if you open up this expression on the left hand side and simplify then you can very

easily arrive at this form. So, remember we have to find out theta and these terms a B

and C they are completely known because y E x E these are given to us. So, we need to

solve this equation in order to solve for theta.

So, this is a standard equation which we have been solving.
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So, once again just to reiterate what we have done we have defined this x in terms of tan

theta by 2 express sine theta and cosine theta in terms of x substituted into the equation

that we want to solve and finally, obtain this quadratic equation which has solutions in

terms of A, B, C which are completely known to us we have 2 solutions as you can see

again here.
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So, once we have these solutions we can obtain theta the 2 solutions of theta, theta 1 and

theta 2 in terms of tangent inverse of this expression. So, for that again we need to use

the A tan 2 function.

Now, once I have found theta I need to find out S 4. So, to find out S 4, we take recourse

to these steps first I will again look at these relations the forward kinematics relations

which we have used now. Now we know theta x E and y E are of course, given we are

now solved for theta from these 2 equations we can now solve for phi. So, we find out



tangent phi. So, tan phi is nothing, but y E minus l 2 sine theta by x E minus l 2 cosine

theta.

Now, since I know theta and know x E and y e. So, I can calculate phi. So, formally. So,

this is the expression for tan phi.
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So, from here I can solve for phi; again using the A tan 2 function because I need to get

the quadrant right.
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So, I have collected these expressions now. So, we know theta 1, theta 2 in terms of x E y

E, then I calculate phi, once I have phi; I can define the coordinates of point B. So,

coordinates of point B is nothing, but coordinates of point e which is the end-effector

point  which  is  given  to  me  which  is  known minus  this  D cosine  phi  which  is  the

projection of B e this is projection of B E along the x axis.  So, this  is d cosine phi

similarly y B is equals to y E which is known to me minus d sine phi this is d sine phi the

vertical projection of B E..

So, I know the coordinates of point B once I know coordinates of point B I also know

coordinates of point Q therefore, I can now find out this length S 4 because S 4 square is

equal to x B minus x Q whole square plus y B minus y Q whole square that is S 4 square.
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So, from here I can find out the throw of this prismatic actuator. So, this is what I have

written out. So, S 4 is square root of x B minus l 1. So, you have l one here the length P

Q. So, x B minus l one whole square plus y B square because y Q is 0 the y coordinate of

point Q is 0.



(Refer Slide Time: 30:12)

So, let us understand this solution graphically we have been given x E and y E. So, this

point E is fixed what is not fixed is this hinge a on the end-effector link a can move on

this circle on the hinge on the link l 2 can move on this circle. Therefore, if I want to

assemble the mechanism then it can happen only at these intersection points of the two

circles. 

Now once A is fixed since e is also fixed therefore, B gets fixed and therefore, you can

find out B Q as we have done there is another configuration which looks like this. So,

this is the end-effector link.

And let me draw the prismatic actuator the other leg. So, here I have drawn it in blue. So,

this red blue configuration that I have drawn is the second configuration of the second

solution for the inverse kinematics problem; this is the workspace of the manipulator.
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So, if you completely extend this link and then move it in the circle; you generate the

outer circle which defines the workspace of this manipulator. Of course, with joint limits

or actuator limits this workspace is going to get more complicated and will be reduced

which you can find out based on geometry.

(Refer Slide Time: 33:15)

So, finally, let me summarize we have looked at the displacement analysis problem of

closed chain manipulators with the example of a 2R-RPR kinematic chain. So, with that I

will close this lecture.


