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Let me start with another crossover operator; name, multi-point crossover. Now before

we start discussing the principle of this particular crossover operator, let me take one

example supposing that I am going to solve the optimization problem involving 10 real

variables. And to represent each real variable supposing that I am using 10 bits. So, the

GA string will be 10 multiplied by 10, 100 bits long. Now let me just show that particular

the GA string.
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Now, the GA string will look like this, supposing that this is the 100 bits long.

Now, at  the GA string is 100 bits  long. So, there will be 99 places for selecting the

crossover  site,  if  I  use the single point  crossover;  now supposing that  fortunately  or

unfortunately. So, we have selected the crossover site which is nothing, but here. So, this

is  nothing,  but  the  crossover  site  in  single  point  crossover.  Now  according  to  the

principle of single point crossover, the bits which are lying on the left hand side of the

crossover site, there will be no change and the bits which are lying on the right hand side.

So, there will be swap in; and if you just follow this particular principle of single point



crossover. So, there is a possibility that in the children solution, there will be no change

no  diversity  due  to  this  particular  the  single  point  crossover.  Because  here,  on  this

particular left side bits there will be no change.

So,  we may  not  get  the  required  diversity  in  the  children  solution  compared  to  the

parents. Just to remove this particular difficulty of the single point crossover, the concept

of the multi point crossover has come. Now here actually what I do is, we try to select a

number of crossover site at random using the random number generator. Now let us see

what happens here.
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Now, supposing that these 2 parents are going to participate in multipoint crossover, and

as I told the crossover sites multiple number of crossover sites are selected at random.

Now here I am selecting 1, 2, 3, 4, 5 crossover sites. Now let us see how to find out the

children solution from these 2 parents. The principle is very simple, now what I do is

first we concentrate on the leftmost crossover site; that means, this particular crossover

site and the bits which are lying on the left hand side of the first crossover site, there will

be no change and the bits which are lying between the first and second, here. So, there

will be some swapping.

The next is your the bits lying between the second and third. So, there will be no change

then the bits lying between the third and fourth. So, there will be swapping and the bits

lying between fourth and fifth will remain the same, and the bits which are lying on the



right hand side of the last crossover site. So, there will be some swapping. And due to

that,  you will  be getting  the  children  solution  which  is  nothing,  but  this.  So,  this  is

actually the children solutions which will be getting using the concept of this multi point

crossover. Now here as I select a number of crossover sites at random. So, there is a

possibility  that,  there  will  be  some  sort  of  diversification  in  the  children  solution

compared to the parent’s solutions. Now this is actually the merit or the plus point of the

multipoint crossover or in comparison with the single point the crossover.

So,  this  particular  crossover  operator  is  more  efficient  particularly  for  the  problem

having a large number of variables.  Now I am just  going to discuss with another  or

crossover operator which is very popular and this is known as uniform cross over. Now

this  uniform  crossover  is  actually  a  slightly  modified  version,  and  I  should  say  a

sophisticated version of this particular the multipoint  crossover. Now let  us see; how

does it work. 
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Now the principle is very simple, supposing that these 2 are the parents which are going

to participate in this particular the uniform cross over. So, what I do is we start from the

leftmost bit position and; that means, I am here. So, here we take the help of some set of

coin tossing with probability 0.5 for appearing head. Now if head appears then there will

be swapping of the bits and if it is a failure then the bits will remain the same.



Now, this particular procedure is followed at each of the bit position. Now in computer

program,  now how to  implement  this  particular  the  technique;  the  principle  is  very

simple. So, what we do is at each of the bit position we just take the help of 1 random

number generator. Now this particular random number generator will generate a number

lying  between 0 and 0.5.  So,  if  sorry lying  between  0  and 1.0.  Now if  the  number

generated by the random number generator is found to lie between 0 and 0.5. So, that

will  be  a  success;  that  means,  success  mean the head will  appear  and there  will  be

swapping of the bits.  So, this  particular  principle  is followed just to get the children

solutions from the parents. Now if I just consider this 2 parents and if I consider that

head has appeared at a particular bit position, now let us see how to find out the children

solution.

Let us assume that the head has occurred at the position that is the second one, the fourth

one, the fifth one, 8 9th 12, 18, and 20th position; that means, in this positions there is a

success in coin tossing that mean the head has appeared, there will be swapping. Now if I

see the parent position, this is the parent position second. So, this is 0 1. So, 0 1. So, it is

a success. So, this will become 1 and 0 then comes here the fourth one. So, this is the

fourth position. So, this is the success. So, there will be a swapping. So, it is 1 1. So, here

on the children solution this will remain same as 1 1. Then comes your; the fifth position

is a success, once again there will be swapping. So, 0 0 will become 0 0 here, now this

particular procedure is followed. 

And if we follow this particular principle, starting from the 2 parents we will be getting

the children solution like this, now how to implement.  So, the method which I  have

already discuss is one of the possible methods. Now if you see the literature there is

another method with the help of which. So, this particular the uniform crossover can be

implemented very easily. The method is as follows; now supposing that say I have got 20

bits and will have to implement the uniform crossover. Now what I do is we take the help

of a template, now this template is nothing, but actually or this is a just like your; the

plate sort of thing, where there are some marked position 20 positions for the 20 bits.

Now, supposing that. So, this is the template now here on this template. So, this is the

position for the first bit, this is the position for second bit and. So, on and might be this is

the position for the twentieth bit. Now what I do is, here at all these 20 positions we

generate 1 and 0 using the random number generator. Now supposing that there is 1 here,



there is 0 here, there is 1 here and in between there are some zeros and ones. Now the

principle is as follows if there is a 1 at a particular position there will be a swapping of

the bits and if there is 0.

So, there will be no swapping at the bits will remain intact and this particular procedure

is  followed  for  all  the  20  bits  positions.  And  by  using  this  template  I  can  also  or

implement the concept of this particular the uniform crossover and here in this particular

uniform crossover starting from the 2 parents. So, I will be getting the children solution.
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Now, if I compare the performance of this particular your uniform crossover with your

the single point crossover or say 2 point crossover, now we are getting some advantage

in uniform crossover in the sense that the problem having the large number of variables.

So, this uniform crossover is found to perform better compared to both single point and 2

point  crossovers.  Now  we  have  seen  the  way  the  different  crossover  operators  are

working and using the crossover operator how to get the children solution. And as I told

several time using this crossover operator, there will be exchange of properties and we

will be getting some diversity in the children solutions. Now let us try to concentrate on

another very powerful operator which is known as mutation.

Now, if you see what happens in biology? So, this biological mutation is well known and

let me take a very simple example of this biological mutation. Now generally the crows

are black in color, but if you just try to find out if and if a fortunate enough if and if you



get 1 crow, which is having white color. So, that could be due to with the biological

mutation. The concept of this biological mutation has been copied in genetic algorithm in

the artificial way and here also we use the principle of mutation. Now let us see how to

implement this particular the mutation.
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Now, this mutation can bring local change around the current solution, and by doing that

it  can  help  to  overcome the  local  minima  problem.  Now I  am just  going to  take  1

example just to show you; how does it work. So, here in mutation this is the bitwise

nutrition. So, what I do is if there is 1 that is converted into 0 and vice versa.

Now, as I told it helps the GA to overcome the local minima problem.
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Now, let us see; how can it overcome this particular the local minima problem. Let me

take the example of a function having only one variable.  Now here in this particular

function say Y is a function of only one variable f x. Now if I plot and supposing that I

am getting this type of local basin and that type of global basin, now here in genetic

algorithm what I do is we start with a population of solution selected at random, now

supposing that unfortunately all the initial solutions are lying in this particular the local

basin. 

And if  the solutions lying on the local  basin and if  I run GA for a large number of

iteration, there is a possibility GA is going to hit this particular as the optimal solution.

But this is not the globally optimal solution, this is the locally optimal solution whereas,

the globally optimal solution could be here, because this is a minimization problem. So,

this is the globally minimum solution and that is the global locally minimum solution.

Now, if I run GA for a large number of generation, there is no guarantee that I will it will

be able to hit the globally minimum solution. Now it will be able to hit the globally

minimum solution if and only if we can push at least one solution from local basin to the

global basin. Now it is this particular operator the mutation operator, which can push at

least 1 solution from the local basin to the global basin, and if it can push 1 solution to

the global basin there is a possibility GA through a number of iteration it is going to hit

this particular the globally minimum solution.



Now, this is the way actually the GA is going to help the GA. So, the mutation is going

to help the GA to come out of the local minima the problem. Now let me go back to the

previous slide just to show you. Now how to select that particular  the probability  of

mutation; now here if you see the probability of mutation place a great role. Now if the p

m that is the probability of mutation is found to be or if it is selected to be a very low

value.

The  very  purpose  of  using  the  mutation  may  not  be  soft,  on  the  other  hand  if  the

probability of mutation is selected to be a very high value.  So, this GA will become

equivalent to the random work method or the random search method; that means, will

have to select this particular the pm in a very careful way. And the thumb rule to select

actually  this  particular  pm is  as  follows,  that  pm should  lie  between 0.1 divided by

capital L and 1 divided by capital L. Now here this L is nothing, but the length of the GA

string now supposing that this L is equals to 100, there are 100 bits in the GA string and

here actually what I do is. So, 0.1 divided by L is nothing, but 0.001 and 1 divided by L

is nothing, but 0.01 and this particular pm should lie between this. So, the pm should lie

between 0.001 to 0.01. So, generally we as I as I told generally we keep the value of this

mutation probability to a low value, to we just select a low value.

Now, let me try to understand the utility of this particular the mutation operator in a

slightly different way. Now supposing that I have got one GA whose task is to find out

the optimal solution and for simplicity, let me assume that the population size that is

your; the N that is found to be only 4.
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Say capital N is equals to 4 and let me take a very hypothetical example supposing that

the GA strings are as follows, and in each of the GA string supposing that I am using

only 10 bits. The GA string is as follows say 0 0 1 1 dot, dot, dot and the last is 1 0; the

next is 0 1 0 1 1 1 the next is your 0 0 1 1 1 0 0 1 1 0 0 0 supposing that these are the GA

strings and they are going to participate in crossover. Now if I a single point or 2 point or

multipoint or uniform crossover. So, he will be getting some children solution. Now if I

use this crossover operator, there is a possibility that I am going to miss the value 1 at the

leftmost bit position.

Now, if I a single point crossover. So, at the leftmost bit position I will not be getting 1, if

I use 2 point multipoint uniform at the left most bit position I will not be getting 1, but

supposing that my globally optimal solution is such that if I want to indicate that, there

must be 1 at the leftmost bit position; that means, if I want to hit that globally optimal

solution, the condition is the leftmost bit position should be one; that means, there should

be 1 here.  Now the reality  is  not  even a  single the crossover  operator which I  have

discussed we will be able to generate 1 on the leftmost bit position then how to overcome

this particular problem. To overcome this particular problem, it is the mutation that is the

bitwise mutation which is going to help us and there is a possibility that I will be getting

1 at the left most bit position using this particular the mutation operator.



So, this is actually the real strength of this particular the mutation operator and that is

why we should use the mutation. Now supposing that I have got only such 4 GA string,

and in each GA string are got only 10 bits; now 10 multiplied by 4, I have got 40 bits.

Now if I have got only 40 bits and supposing that the mutation probability is say 0 point

say 03, if it is 0.03. Now this is equal to your 1.2. 40 multiplied by 0.03. So, this is

nothing, but 1.2 that means, out if this 40 bits, there will be mutation probabilistically

only on 1 bit this is equivalent to one, but the as it is probabilistic. So, there could be

mutation on 2 bits also, and at the same time there could be a chance that there will be no

mutation.  If  I  consider  the  mutation  probability  as  0.03  now;  that  means,  we  have

understood that the mutation probability has got some role at this operator has got big

role in the working principle of this particular the genetic algorithm.

Now, let us try to find out like whose contribution is more and let us try to compare the

contribution of this particular the crossover and your; the mutation operator.
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And my question is should I go for crossover or only mutation or both. Now to answer

this actually the whole community of this nontraditional optimization tools, particularly

those  who  are  working  on  GA,  actually  the  whole  community  was  divided  into  2

subgroups.  Now 1  group  used  to  believe  that  there  should  be  crossover  as  well  as

mutation and another group used to believe there should be only mutation crossover is

redundant. Now to answer that actually I am just going to discuss on this, this is so. Now,



if  I want to have a very efficient  GA search there should be construction as well  as

disruption. That means, will have to construct some GA string will have to destruct also

because we want some diversification in the search process.

Now, if you see in terms of disruption capability, now this particular your; the mutation

operator is more powerful in compression with the crossover operator. But if you see in

terms  of  the  construction  capability  now  the  crossover  operator  is  preferred  to  the

mutation operator and that is why in genetic  algorithm and genetic  programming we

actually  considered  both  your  crossover  and  mutation,  but  we  give  slightly  more

weightage on the crossover compared to the mutation.

On the other hand the techniques like evolutionary strategy or evolutionary programming

they give more weightage on the mutation operator. In fact, they do not use the concept

of this particular the crossover operator.
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Now, I am just going to solve one numerical example just to help you in understanding

like how to carry out the calculation little bit in binary coded GA. Now here what I am

going to discuss like how many bits are to be assigned to represent the real variable and

to represent the integer variable, if you want a desired level of precision. Now the way I

have form this particular the numerical example is as follows, I am just going to use 1

binary coded GA to solve 1 optimization problem having 2 variables.



Now, out  of  2  variables  there  is  one integer  variable  and the second one is  the real

variable  now real  variable  is  having the  range 0.2 to  10.4 three say and the integer

variable is having the range 0 to 63, now how to design a suitable GA string to ensure the

precision level of 0.01 for the real variable and the precision level of 1 for the integer

variable.
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Now, let us try to solve this particular the numerical example. Now how to determine

how many bits are to be assigned to represent this particular the real variable. Now this

particular formula we have already got we have already discussed how to derive that you

have seen, now I am just going to use this particular the formula just to find out this how

many bits are to be assigned to represent the real variable.

Now, here actually what I do is what is what I do is, we try to calculate this l 1 and to

calculate this l. 
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So, we know the x 1 maximum that is 10.43 and we know x 1 minimum is 0.2 and the

desired accuracy level is 0.01 and if you calculate this will become log base 2, 1 0 2 3

and that is approximately equal to log base 2 two raised to the power 10 and that is

approximately equal to your 10.

So,. So, the number of bits which I am going to assign to represent this particular real

variable is 10; that means, we are going to assign 10 bits to represent this particular the

real variable.
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Similarly, if you want to determine how many bits are to be assigned to represent the

integer variable, I can use this particular formula. And if I just substitute the values x 2

maximum is 63, x 2 minimum is 0 and here the accuracy level is 1 and if you calculate

this will become log base 2 63 which is approximately equal to the log base 2 63 is

approximately equal to 64. So, this is nothing, but 2 raise to the power 6 and that is

equals to 6. So, I will have to assign 6 bits to represent this particular the integer variable

and once I have got this particular information, now I can design this particular your; the

GA string. Supposing this is the GA string. So, the first the 10 bits will represent your;

the real variable. So, this is going to represent the real the 10 bits and the remaining 6

bits are going to represent this particular your; the integer variable. So, this is the way

actually we can represent the GA string in order to handle the problem having 1 real and

1 integer that is nothing, but the mixed integer optimization problem.
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Thank you. 


