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Now, the third topic that is on binary coded genetic algorithm.
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So, here actually what we do is the design variables those are expressed in terms of the

binary codes. Like if I have got a function like y is a function of say 3 variable like x 1, x

2, and x 3. And let me take that out of these 3 variable say x one is a real variable, x 2 is

an integer variable,  and x 3 is  once again a real variable.  So, each of this  particular

variables are having their own rangers.

Now, within this particular range so, what we do is we will have to explain we will have

to represent. So, this particular variable and to represent each of the variable we use

some binary codes. For example, say depending on the accuracy limit or the precision

limit.  So,  we will  have to  assign some number of bit  to express this  particular  x 1,

supposing that say I am representing I am using say 10 bits to represent x one then I am

using say 6 bits  to represent say x 2 and I am using.  So, once again that  10 bits  to

represent say x 3.



So, the GA string will be 10 plus 6 plus 10. So, it is nothing, but 26 bits long. So, I will

have to use that 26 bits long GA string and here in binary coded GA actually as I told the

variables are coded in the form of the binary number.

Now, once we have coded this particular in the form of binary. So, let us see how does it

work?

(Refer Slide Time: 02:09)

Now, the working cycle of GA, now here actually what I do is we start with a population

of solution. Now if it is binary coded GA we start with a large number of binary codes

binary strings for example, say if the population size is 100. So, we use 100 GA string

and this particular GA string those are generated at random using the random number

generator.

Now, once you have got the number of bits to be assign to each of the variable. Now I

can  find  out  the  decoded  value  for  each  of  these  particular  the  substance  used  to

represent the design variable. And once I have got the decoded value and knowing the

respective rangers and using the linear mapping rule.

So, we can find out what should be the real values for this particular the real variables

and those decoded value will be the values for this particular the integer variables. And

once I have got the numerical values for this particular so, this the numerical values for

the design variables. So, I can find out what should be the value for this particular the



objective function, that is y and for the whole population of this particular binary coded

GA.

So, if this is the initial population of the binary coded GA; so I can find out for the whole

population of size N. So, I can find out the fitness information. So, these are nothing, but

the  fitness  information  for  the  whole  population.  And  once  I  have  got  the  fitness

information for the whole population. Now we are in a position to decide out of these n

solutions, which are good and which are bad. Now to decide which are good which are

bad we take the help of one operator that is called the reproduction operator. Now the

purpose of using this reproduction operator is to form a mating pool.

Now, as this initial population is generated at random. So, there is no guarantee that all

the solutions will be equally good there could be a few good solutions; there could be a

few bad solutions also. Now if you find out some good solution. So, in the mating pool

actually we are going to take a multiple copies of this particular good solution.

And if you find the bad solution in initial population those solutions we are going to

delete  from this  particular  the  mating  pool.  The philosophy behind a  going  for  this

mating  pool  that  this  particular  the  mating  pool  will  consists  of  good  solution

probabilistically.

Now, if it is a maximization problem. So, if I take the average fitness of this particular

mating pool, the average fitness of the mating pool is expected to be more compared to

that of this particular the initial population.

Now, if you see the literature we have got a few reproduction scheme for example, the

oldest one is nothing, but the proportionate selection or the rule (Refer Time: 05:34)

selection or the probability of selecting a particular solution is proportional to the fitness.

So, the higher the fitness the more will be the probability of being selecting of being

selected in this particular the mating pool;  that means,  if you find out some solution

whose fitness is not good there is a possibility it will be deleted from this particular the

mating pool.

Now, this particular the proportionate selection that is the oldest method of reproduction

has got one drawback that there is a chance of premature convergence and to remove that

particular problem. So, another reproduction scheme was proposed and that is nothing,



but  the  ranking solution.  Now in  ranking solution  actually  what  is  do is  in  ranking

selection what is do is we do the proportionate selection based on the ranks, but not

based the fitness information.

So, based on the rank we do this particular proportionate selection and by doing that we

can remove the chance of this premature convergence, but now it is actually we use some

sort of tournament selection. And in tournament selection we select a tournament size

and those solutions are selected at random from this particular initial population and we

try to find out the best and the best one is selected in the mating pool and once we have

selected the best one in the mating pool.

So,  all  the  solutions  consider  in  the  tournament  will  be  returned  back  to  the  initial

population  and  if  the  population  size  is  capital  N.  So,  we  will  have  to  play  the

tournament for capital N size N times and each time we are going to select a particular

the solution.

Now, if  you see  the  computational  complexity  the  computational  complexity  of  this

particular  your  the  tournament  selection  is  much less  compared  to  the  proportionate

selection. And that is why nowadays we use only the tournament selection.

Now, once we have got this particular mating pool next we try to form the mating pair

and this particular mating pair selection is done at random.

Now, supposing that we have got n population size. So, there will be N by 2 mating pairs

and an each pair there will be 2 such solution and these particular mating pair selection

will be at random. Now supposing that, we have got N by 2 mating pairs. Now for each

of the mating pair  whether  it  is going to participate  in the next operation that is  the

crossover. So, we try to take the help of one probability that is called the probability of

crossover.

Now, depending  on  the  probability  of  crossover  we  take  the  decision  whether  this

particular mating pair is going to participate in crossover or not. Now if it participating

crossover  there  will  be  exchange  of  properties  and  due  to  this  particular  crossover

operation. So, starting from the 2 parents in fact, we are going to get we are going to get

like 2 children.
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Now, if you see this particular the literature we have got the different types of crossover

operators like for example, say we have got the single point crossover.

So, we have got the single point crossover then comes we have got the 2 point crossover,

then comes we have got the multi-point crossover, and we have got your the uniform

crossover. So, this particular crossover operators we generally use just to find out the

children’s say solutions from the parents.

And there will be exchange of properties at due to this particular crossover and there is a

possibility some new properties are going to come in the children solution.

Now, once  I  have  got  this  particular  children  solution  next  we go for  the  mutation

operator. Now in mutation operator there will be actually sudden change of parameter

and this particular mutation operator is going to help us to come out of the local minima

if any. And using this particular this mutation operator generally we go for the bitwise

mutation and using this particular bitwise mutation. So, there is a possibility that will be

able to come out from this particular local minima problem and GA is going to hit the

globally optimal solution.

So,  this  complete  actually  one  iteration  of  the  GA and  this  particular  process  will

continue for a large number of generation or the large number of iteration,  then GA



through a large number of  iteration  will  try to  find out what  should be the  globally

optimal solution.

So, this is the way actually one binary coded GA works.
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Now if you see the merits and the demerits so, this particular binary coded GA has got a

few merits and demerits that I am going to discuss after sometime, but before that let me

tell you that we actually carried out some hand calculation just to show you the working

principle of a binary coded GA. And by doing that particular hand calculation in fact, we

could prove indirectly the GA can optimise the function and GA can find out the optimal

solution through a large number of iteration.

Now, if you want to ensure a very efficient search for the GA. So, we will have to select

the parameters in an optimal sense and that is why will have to go for this particular the

GA parametrics  GA parameters  setting.  Now the performance of a GA depends on a

balance between the population diversity and the selection pressure.

So,  there  are  2  things  one  is  called  the  selection  pressure  and another  is  called  the

population diversity. Now this population diversity and selection pressure there should

be a proper balance if you want to ensure a very efficient search for this particular the

GA.



Now, let  me see  what  happens if  the  selection  pressure  is  too  high,  if  the  selection

pressure  is  too  high  there  could  be  a  chance  of  premature  convergent  and  if  the

population  diversity  is  too  large.  So,  there  is  a  possibility  that  there  will  be enough

search, but it may take long time to reach that particular optimal solution.

So, there should be a proper balance between selection pressure and this particular the

population  diversity  in  GA.  And  to  ensure  that  we  generally  go  for  some  set  of

parameters  setting  like,  we  try  to  set  what  should  be  the  optimal  parameters  like

probability  of  crossover,  then  probability  of  mutation,  then  population  size  and  the

maximum number of generation.

Now, we use a particular method of GA parameters setting here one parameter is valued

at a time keeping the other parameters constant and this is an approximate way of doing.

So, using this approximate method of GA parameter setting we can find out what should

be the newer optimal GA parameter.

Now, if you run this particular GA using that particular newer optimal parameters there is

a possibility that it will be able to maintain the balance between the selection pressure

and the population diversity, and GA will be able to hit that globally optimal solution.

So,  this  is  actually  the  purpose  of  the  GA parametric  study  which  I  have  already

discussed in much more details.
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Now the next topic is the schema theorem of this particular the binary coded GA. Now

actually  the  purpose  of  this  particular  schema  theorem  was  to  prove  indirectly  the

convergence of this particular the binary coded GA.

Now, here as there is no such direct mathematical proof till today of this particular the

GA; so we took the help of the schema theorem just to indirectly prove that s GA can

maximize or minimise GA can optimize that particular the objective function.

Now, here actually what we do is now let me let me just tell you in short in details have

already discuss supposing that we have got one population of solution of binary coded

GA of size say n and we have got a few binary strings here say large number of binary

strings here. And we will try to find out the similarity among this particular the binary

string and after watching this particular similarity.

So, we try to design one schema and this schema is nothing, but a template. So, we try to

find out a template which is followed by the large number of your the GA string the

binary coded GA string. And this particular schema or the template we try to see the

growth of the decade through a large number of iteration and mathematically we can

actually  derive  one  expression.  And that  is  that  expression  is  known as  the  schema

growth expression the schema growth theorem.

So, this schema growth theorem we can find out one mathematical expression and once I

have got that particular mathematical expression. Now, we can take the decision whether

a particular schema is going to survive or not and whether this particular schema or the

template is going to get a large number of your solutions or not.

Now, this actually mathematical we can find out one expression and from this particular

express and we can come to one conclusion that if I have got a schema, which is having

short defining length short defining length short defining length then no order and if the

average fitness of this particular schema is found to be more than the average fitness for

this particular the whole population and that is called the scheme of fitness. So, if the

schema fitness is found to be more than the average fitness of this particular the whole

population.

So, there is a possibility that I will be able to find out. So, this particular schema will

receive the more and more number of copies in the as the iteration proceed. So, if I have



got a schema which is having short defining length low order and fitness is higher than

the average fitness of the population that particular  schema is known as the building

block.

So, this is nothing, but the building block for this particular your GA search and this

building block is going to gain a more and more number, if it is a good building block it

is going to gain in number through a large number of iteration and that is going to win at

the end and this particular building block is going to indicate what should be the globally

optimal solution.

So, using this schema theorem or the building block hypothesis so, we can say that if

there is  a good schema.  So, that  particular  good schema is  going to gain in number

through a large number of iteration and that is going to dictate the whole population and

that  is  going  to  indicate  are  going  to  give  the  globally  optimal  solution.  Now  this

particular  schema  theorem  is  actually  an  indirect  proof  or  the  convergence  of  this

particular the binary coded GA.

Now, here this binary coded GA has got the schema theorem this is a plus point because

many people did not initially believe the binary coded GA, but after the schema theorem

was proposed people started believing so, this particular the binary coded GA.
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Now here this building block hypothesis I discuss in details I also solved one numerical

example  like  how to  find  out  the  defining  length?  How to  find  out  the  order  of  a

particular schema?

How to find out the schema fitness and how to find out whether a particular schema will

receive more number of copy or it is going to decay? So, that type of decision we can

take; so just to explain that I took the help of one numerical example in this particular the

course.

Now, I am just going to concentrate little bit on the limitation of these particular the

binary coded GA. Now we have already discussed that the accuracy depends on accuracy

depends on the number of bits assigned to represent a particular the variable now if you

need more accuracy.

So, we will have to assign a large number of bits and supposing that I have got a function

which is to be optimised. So, y is a function of say 10 variables x 1 x 2 up to say x 10.

So, I have got 10 variables and I want a very good precision in each of this particular say

10 variables.

That means we will have to assign a large number of bits might be say 20 30 or 40 bits.

Now if I assign say 20 bits to represent each of the variable. So, that 10 such variable.

So, 10 multiplied by 20. So, your GA string will be 200 bits long. Now if the GA string is

longer and for it is effective processing so, I will have to use a large population size. So,

might be if it is 200 I will have to take n equals to say 1000.

So, there will be huge competition and GA will become very complex computationally

very expensive and it will become slower and slower. And that is why because this type

of algorithm the binary coded GA the computational complexity is actually L log L.

So, L multiplied by log L is the computational complexity or this capital L is nothing, but

the total string length and if L is large. So, the computational complexity is going to

increase and just to overcome; so this type of problem. So, actually we try to take the

help of your the real coded GA. So, the binary coded GA is not going to help us to

achieve the arbitrary precision which we need in the values of the variable.



So, this is one of the drawbacks of this particular the binary coded GA. And another very

important drawback is nothing, but the hamming clip problem now this hamming clip

problem is actually a very difficult problem faced by this binary coded GA because in

binary codes from one number if I want to move to the next number like or the previous

number the number of change which I will have to consider in the values of the bits is

not kept the same.

For example say let me take a very simple example say 15 to 16 if I want to go and 15 to

14 if I want to go. The number of change to be incorporated in the binary representation

is not exactly the same. So, I will have to go for the different number of changes.

If I want to move from a particular number to the previous number or to the next number

so, actually so, this particular the problem is known as the hamming clip problem of the

binary codes. Now this hamming clip problem is going to create some sort of artificial

hindrance to the gradual search of this particular the genetic algorithm.

Now, if the GA search is proper. So, this particular search has to be gradual and there

should not be any abrupt search and that is why so, this particular hamming clip problem

of  the  binary  coded GA is  not  desirable.  And to solve  this  particular  hamming  clip

problem actually we take the help of another type of GA that is called the Gray code GA.

So, it take the help of this gray coded GA now this particular gray coded GA is going to

help us just to remove this particular the hamming clip problem of the binary coded GA.

Now, here are actually this real coded GA, I have discussed in much more detail, but the

gray coded GA most probably I did not discuss in detail, but it is very simple only thing

the design variable should be expressed in terms of gray codes in place of the binary

code; other things will remain the same.
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Now, the next  is  actually  we discussed little  bit  on the  constant  handling  in  genetic

algorithm.

Now,  genetic  algorithm  can  solve  actually  both  the  unconstrained  as  well  as  the

constrained  optimisation  problem.  Now  here  if  you  want  to  solve  the  constrained

optimisation  problem.  So,  will  have  to  take  care  of  this  particular  the  functional

constrained.

Now, this functional constrained actually it could be non-linear function of the design

variable, it could be the linear function of the design variable, and it could be either or

equality some or it could be inequality functional constrained.

So, all the functional constrained actually will have to consider and GA will have to find

out one optimal solution, which is visible in the sense that it is not going to Biolate any

of this particular the functional constrained.

Now, to ensure that actually what we do is we take the help of one approach and that is

called the penalty function approach. Now this penalty function approach in fact, I have

discussed in much more detail and I have solved one numerical example. Now in sort let

me tell you that in sort let me tell you like how to implement this particular the penalty

function approach.



Now, supposing that say I have got a function say y is a function of say 2 variable for

simplicity let me consider the this is a function of only 2 variable. Now using these 2

variables I have got some say objective functions say this is the objective function and I

have got a few functional constrained.

For example, so, let me take a very hypothetical functional constrained like x 1 square

plus x 1 x 2 minus x 2 square should be greater than or equals to 5.0. So, this  is a

functional constraint non-linear functional constraint inequality functional constraint.

Now, if I want to solve with the help of a genetic algorithm. So, genetic algorithm will

have to find out those values of x 1 and x 2.  So, that is  satisfied this  particular  the

functional constraint and if it does not satisfy. So, this particular functional constrained.

So, that will be declared as the invalid solution and that is not be will not be considered

as valid optimal solution.

Now, how to how to ensure and how to penalize? If there is any such violation of this

particular  the  functional  constraint.  Now  supposing  that  I  am  solving  say  one  say

minimization problem say, and I have already got the objective function the value of the

objective function is a small f and I am just going to solve one minimization problem;

that means, lower the value of the objective function. So, better will be the solution.

Now, here if there is any such violation of the functional constrain. So, I calculate the

modified fitness capital F and that is nothing, but small f plus a penalty term P, if it is a

minimization problem, and if it is a maximization problem. So, this particular the penalty

term has to be. So, this is for minimization problem this is for minimization problem and

F is nothing, but small f minus P it is for the maximization problem.

Now, how to calculate this particular penalty? So, this penalty is calculated using the

different approaches. Now, one is called the static penalty, another is called the dynamic

penalty and we have got the concept of adaptive penalty.

Now, in  static  penalty  actually  what  we do is  we use  some constant  penalty  value,

generally we considered some high value and this particular high value is calculated with

the  help  of  some user  defined  the  constant  terms  the  in  details  those  mathematical

expression I have already discussed.



So, I am not going for that and this dynamic penalty and this adaptive penalty are going

to vary it is going to vary proper example if you see this dynamic penalty. So, it is going

to vary from iteration to iteration and to calculate the penalty term in dynamic penalty

approach.

So, we will have to include the iteration number also. So, this particular penalty term is

going  to  be  updated  with  the  number  of  iterations.  Now if  I  consider  this  adaptive

penalty. So, here the concept is slightly different. Now in calculating the adaptive penalty

term; so it will depend on the nature of this particular your your this thing nature of this

functional constraint also.

So, here if there is no such violation. So, there will be one penalty term which is having

some low value, but if there is a violation.  So, there will be a penalty term which is

having some high value. On the other hand if I go for the static penalty and the dynamic

penalty. So, if there is no violation the penalty term will be put equal to 0, now using this

particular penalty term. So, I can find out what is this modified fitness that is capital F.

Now, we will have to go for reproduction based on this particular the modified penalty

this  modified  fitness.  And based on the modified  fitness  we go for the reproduction

scheme just  to  get  this  particular  the  mating  pool.  And once  you got  this  particular

mating pool, then we will go for your the crossover mutation and others and that will

complete the iterations of the GA and by falling this particular method through a large

number of iteration.

So, we will be able to find out the GA will be able to find out what should be the globally

optimal solution. Now this is the way actually we can use the penalty function approach

to handle the functional constraint in this particular the genetic algorithm.
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Now, this genetic algorithm has got a few advantages and disadvantages.

Now, it has got an advantages for example, so, it can tackle a variety of problem. So, it is

much robust compared to the traditional tools for optimisation. And so, if there is any

discontinued of the objective function so, it can handle because it does not required the

gradient information of this particular your objective function. And there is another big

advantage that we can go for parallel computing as this is a population based approach.

So, easily we can implied implement that parallel computing with the help of this MPL

algorithm.  Now  it  has  got  a  few  drawbacks  for  example,  the  genetic  algorithm  is

computationally very expensive it is low. And in fact,  it  is bit  difficult  to implement

online  if  you  want  to  get  the  optimal  solution  within  a  fraction  of  second.  So,  the

conventional genetic algorithm cannot be used.

And this genetic algorithm is actually a black box set of thing for example; say if you

want to solve one maximization problem or minimization problem.

Now, on  the  computer  program of  the  genetic  algorithm,  we just  a  write  down the

expression of the objective function,  we give the range of the variables  and we also

decide all the GA parameter and along GA then after a large number of iteration there is

a possibility the GA will be able to get that globally optimal solution, but in fact, the user



may not know actually what is happening inside the GA and that is why we called the

genetic algorithm is nothing, but a black box.

Now, these are all disadvantages so, there are some merits and demerits and these are all

disadvantages of this particular the genetic algorithm. Now considering the weakness of

this  particular  genetic  algorithm that  is  the genetic  algorithm cannot handle the local

optimisation very efficiently, we take the help of on hybrid optimisation tool and that is

actually efficient optimisation tool.

Now, sometimes we will have to use this type of efficient optimisation tool which is

nothing, but a hybrid optimisation tool. Now as we note the genetic algorithm is actually

a very powerful search technique or global optimisation, but it is local search capabilities

not  so,  good  and  that  is  why  we  combine  the  global  search  capability  of  genetic

algorithm along  with  the  local  search  capability  of  a  local  search  technique  likes  a

steepest descent algorithm, just to efficiently solve that optimisation problem. And that is

why the concept of this efficient hybrid optimisation tool came into the picture.

Thank you.


