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Binary – Coded Generic Algorithm (BCGA)

I am going to start with topic 3 of this course that is Binary-Coded Genetic Algorithm in

short  this  is  known  as  BCGA and  this  is  also  popularly  known  as  simple  genetic

algorithm or SGA.
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Introduction to Genetic Algorithm, now genetic algorithm is a population based search

an optimization algorithm, which works based on the principle of natural genetics and

Darwin’s principle of natural selection. Now as it works based on Darwin’s principle of

natural selection that is the survival of the fittest on principle a genetic algorithm can

solve the maximization problem. And here we start with a population of solution selected

at random and we use the concept of probability in different iteration and that is why this

is a probabilistic iterative search.

The concept of GA was proposed in the year 1900 and 65 by Professor John Holland of

the University of Michigan USA.
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Now, I am just going to start discussing the walking cycle of a GA, now here we start

with a population of solution selected at random and we say that generation equals to 0.

Now here we have got 1 termination criteria.  So,  there could be several  termination

criteria and 1 of them could be the maximum number of generation through which I am

going to  run this  particular  genetic  algorithm.  Now if  the  generation  is  found to  be

greater than equals to the maximum number of generation pre specified that is the end of

the program or we try to find out the fitness of all solutions in the population.

Now, here  the  fitness  is  nothing,  but  the goodness  value  of  that  particular  objective

function and what we do is for a maximization problem. So, we consider the fitness is

nothing, but the value of this particular the objective function and once we have got the

fitness information for the whole population. 

So,  now, I  go for the G operators  like reproduction,  crossover  and mutation.  As the

population of a genetic algorithm is selected at random we have got no control on the

quality of this particular the solutions and that is why before I grow for the crossover and

mutation. So, what you will have to do is we will have to select 1 mating pool, using the

principle of some selection scheme or reproduction scheme show that in the mating pool

there will be all such good solutions and to get this mating pool we take the help of

reproduction scheme.



Now, if you see the literature we have got different types of reproduction schemes the

oldest 1 that is the proportionate selection or the ruler will selection and after that the

concept  of  ranking  selection  came  and  now it  is  we  generally  use  a  more  efficient

particularly in terms of computation that is called the tournament selection, now using

this reproduction scheme. 

So, we will be getting the mating pool and probabilistically the quality of the mating

pool should be better compare to the quality of the initial population and once I have got

the mating pool now we try to form some mating pairs at random and for each of the

mating pairs, we use the operator that is the crossover and in cross over there will be

exchange of properties between the 2 parents and consequently you will be getting the

children solutions.

Now, if you see the literature we have got different types of cross over operators for

example,  single  point  crossover,  2  point  crossover,  multi  point  crossover,  uniform

crossover  and  so  on.  I  will  be  discussing  the  principle  of  each  of  these  crossover

operators in much more details. Now once you have got the children solution there will

be some diversification of the properties and we take the help of another operator that is

called mutation. 

Now in  the  biology  we  use  the  term  mutation  just  to  indicate  a  certain  change  of

parameters  and here artificially  we try to copy the concept  of biological  mutation in

genetic algorithm to get some advantage, particularly whenever the solution is going to

start at the local minima. Now this particular thing I will be discussing in much more

details  after  sometime,  now with  this  application  of  the  operators  like  reproduction

crossover and mutation 1 cycle of a GA is completed.

So, here we use the generation counter generation equals to generation plus 1 and this

particular process will go on and go on through a large number of iterations and we will

be getting that particular the optimal solution. So, this is in short the working cycle of a

genetic algorithm.
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Now, let us see the steps we start with the population of random initial solutions which I

have already mentioned the fitness value or the goodness value is calculated, which is

nothing,  but  the  value  of  the  objective  function  particularly  for  the  maximization

problem. Now as I told that on principle a GA can solve the maximization problem, but

sometimes you will be getting some minimization problem and let us discuss how to

solve the minimization problem using a genetic algorithm.

Now, to  solve the minimization  problem what  you can do is  I  can convert  it  to  the

corresponding maximization problem and how to convert that I am going to discuss.
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Supposing that I have got 1 function y equals to fx and I will have to minimize. So, this

particular minimization problem is converted to the maximization problem like. So, this

is equivalent to maximize minus fx and we use the duality principle.

Now,  this  duality  principle  actually  what  we  do  is  supposing  that  I  have  got  1

minimization problem like this say this is y this is x, now what I do is I have got 1

minimization  problem  something  like  this  is  the  unimodal  function  and  this  is  the

minimum solution. Now this particular problem is converted to into the maximization

problem  by  keeping  the  same  optimal  solution.  So,  this  function  can  be  redrawn

something like this now if this is your y equals to f x.

So, this is y equals to minus fx. So, we try to actually maximize this and by doing that

the solution point will remain the same. So, we use this type of duality principle or just to

just  to solve that  particular  minimization problem by converting to the maximization

problem. Now next there is another way of converting the minimization problem to the

maximization and this is something like this. 

So, this minimization problem can be converted to the maximization problem as follows.

So, this is 1 by fx maximize 1 by fx for a fix not equals to 0 or this can be considered as

maximize 1 divided by 1 plus fx for fx greater than equals to 0 or I can write down

maximize  1  divided  by 1  plus  f  x  square  because  this  particular  fx  could  be  either



positive or negative or 0. And that is why to take care of that particular problem we

consider that minimize f x is equivalent to maximize 1 divided by 1 plus fx square.

So,  this  is  the  way  actually  we  can  convert  the  minimization  problem  to  the

maximization and we can solve using a genetic algorithm, but now it is actually we use a

reproduction  operator  that  is  called  the  tournament  selection.  So,  by  using  the

tournament  selection  so  we  can  directly  solve  the  minimization  problem  without

converting it into the maximization problem that particular thing I will be discussing in

detail while discussing the principle of tournament selection. 
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Now, this I have discuss that the population of solution is operated by the operators like

reproduction crossover and mutation and he will be getting the modified solutions. Now

as I told we have got different reproduction scheme and the working principle of these

reproduction scheme will be discussed in detail with suitable example after sometime

now then comes the crossover.
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In cross over there is an exchange of properties between the parents and consequently the

children solutions will be created?

Now, the principal of different crossover operators like single 0.2 point multi point or

uniform crossover will be discussed in details which suitable examples then comes the

concept of mutation.
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And as I told that in biology we use the concept of nutrition just to indicate a sudden

change of parameters. Now this particular mutation is going to help us to come out of the



local  minima  problem  and  how  does  it  help  I  am  going  to  discuss  in  detail  after

sometime, while discussing the beet wise mutation. Now 1 generation of the GA includes

reproduction crossover and mutation and we generally take the help of some termination

criteria, now the termination criteria could either the maximum number of generations

that the user will up to pre specify or we consider some desired level of accuracy now if

you reach the desired level of accuracy we say that. So, my algorithm has reached that

stage that it can indicate the optimal solution.

Now, I am just going to discuss the working principle of a binary coded GA, in much

more details with the help of 1 numerical example.
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Now, let us consider an optimization problem of the form maximize y is a function of 2

variables x 1 and x 2 subject to the condition that x 1 is lying between x 1 minimum and

x 1 maximum x 2 is lying between x 2 minimum x 2 maximum, where x 1 x 2 are the

real variables. Now real variables means it is going to take some fraction value like say

10.2 15.6 and so on.

Now, this particular GA can also tackle the integer variables having the whole number

for example, x 1 could be 10 x 2 could be 15 and so on. Now if you can understand how

can it handle the real variables very easily you will be able to understand how can it

handle  the  integer  variables  and  sometimes  we  will  have  to  tackle  the  mix  type  of

variables like some of the variables are real, and some other variables are integer the



same GA with little bit of modification in the coding, we will  be able to handle the

problem involving integer variables the problem involving real variables and the problem

involving a combination of real and integer variables.

So, I am just going to discuss how to tackle with the help of this binary coded GA this

particular maximization problem.
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Now, step 1 we generate a population of solutions at random using the random number

generator now in binary coded GA a particular solution is expressed in the form of ones

and zeros now if you see a binary scheme it looks like something like this. So, 1 0 0 1 1 1

0 1 1 so this is nothing, but a binary string. 

Now here in this binary string it consists of ones and zeros and these ones and zeros are

nothing, but the bit values of the binary string and this can be. In fact, compared to our

biological  chromosome,  now  our  properties  are  dependent  on  the  nature  of  the

chromosomes and on the chromosome there are some gene values and the properties of a

particular say human being is dependent on the gene values lying in the chromosome.

Similarly the quality of this particular binary string depends on the ones and zeros and

their relative positions.

Now, let us see how to design this particular binary string that I am going to discuss.
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Now, here the population size depends on the complexity of the problem now we have

already mentioned that we start with a population of solutions. The population size could

be 100 500 1000 depending on the complexity of the problem. So, we will have to assign

the more population size for a more complex problem and vice versa. Now as I have

already mentioned that a binary sting can be compared to a biological chromosome and

each bit is nothing, but the gene value of this particular the biological chromosome. Now

how to decide how many bits we are going to assign to the real variables like x 1 and x 2

to solve this particular the problem.

Now, let me take 1 very simple example the number of bits to be assigned to represent a

particular  variable  depends  on how many pieces  and you need in  the values  of  that

particular the variable. Now let me take a very simple example supposing that I have

decided to use only 3 bits to represent a particular the real variable. Now here small l is

nothing, but 3 now if there are 3 bits, now in one side we have got 0 0 0 whose decoded

value that is D is nothing, but 0 and on another side we have got 1 1 1 whose decoded

value is nothing, but 2 raise to the power 0 2 raise to the power 1 2 raise to the power 2. 

So, it is 4 plus 2 6 plus 1 7. So, it is decoded value is 7 now if I was only 3 bits the whole

space for x 1 the real variable supposing the this is the space for the range for x 1 this is x

1 minimum and this is x 1 maximum, the whole range that will be divided into 7 equal



parts. So, this corresponds to the decoded value of 0 this corresponds to the decoded

value of 7 and in between we have got 1 here, 2 here, 3 here, 4 here, 5 here, 6 here.

That means the whole space the whole range for x 1 that is divided into 7 equal parts

now this particular 7 is nothing, but 2 raise to the power 3 minus 1 and here 3 is nothing,

but l. So, 2 raise to the power l minus 1; that means, if I use only small l number of bits

the whole range for x 1 I am dividing equally into 2 raise to the power l minus 1 equal

parts. 

Now supposing that  I  know the range for x 1 that is your x 1 maximum minus x 1

minimum and that is divided into 2 raise to the power l minus 1. So, many divisions and

this  is  equal to your epsilon which is  the precision which we need now this  can be

written approximately as follows that is your 2 raise to the power l minus 1, which is

approximately equal to 2 raise to the power l is nothing, but x 1 maximum minus x 1

minimum divided by epsilon.

Now, if I take log on both sides and if I take log base 2 on the both sides both right hand

and the left hand side I will be getting this particular expression that is l is nothing, but

log  base  2  x  1  maximum  minus  x  1  minimum  divided  by  epsilon.  So,  using  this

particular formula I can find out how many bits are to be used to represent a particular

real variable in order to ensure some pre specified accuracy level. Now it is obvious that

if I need better accuracy. So, I will have to assign mode number of bits and vice versa,

but  mode  number  of  bits  means  there  will  be  more  amount  of  computation  and

consequently the G A will become slower and slower. So, also issues actually I am just

going to discuss after sometime.
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Now, here the computational complexity of this binary coded GA is nothing, but l log l

where l indicates the total number of bits used to represent a particular the string.

Now, as I told that depending on the accuracy required I will have to assign the bits now

supposing that there are only 2 variables x 1 and x 2 now if I need more accuracy in x 1.

So, I will have to assign mode number of bits to represent x 1 and consequently less

number of bits to represent x 2 and this capital l is nothing, but the summation of l 1 and

l 2 l 1 is used to represent x 1 and l 2 bits are used to represent x 2 and we can find out

what is this particular capital l and the larger the value of this capital l the more will be

done the complexity the computational complexity of this binary coded GA.

Now, let us assume that we use 10 bits to represent each variable and here there are 2

variables x 1 and x 2. So, represent a particular solution I need 10 plus 1 20 bits now let

us consider the initial population of the GA and which is generated at random. Now at

each of the bits we have got at each of the binary string we have got 20 bits 10 for each

of the variables x 1 and x 2 and this is the whole population. The size is denoted by

capital n that is nothing, but the population size now let us see how to proceed with this

particular the initial population of solution.
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Now, what I do is in step 2. So, we will have to calculate the fitness of each of this

particular the solution. Now this is a maximization problem. So, the fitness is nothing,

but the value of the objective function and to determine the value of objective function.

So, what you will have to do is we will have to substitute the real values for x 1 and x 2.

Now before I can substitute I will have to determine what should be the real values for x

1 and x 2. 

Now to determine the real values for x 1 and x 2 we use the concept of linear mapping

rule. Now let me let me discuss that now according to this linear mapping rule the real

value for x 1 is  nothing, but x 1 minimum plus x 1 maximum minus x 1 minimum

divided by 2 raise to the power small l minus 1 into the decoded value denoted by D.

Now if I know the value of small l if I know the decoded value. So, very easily I can find

out the real value for this particular x 1.

Now, here let me spend some time how to calculate the decoded value now it is very

easy let us see how to find out the decoded value. Supposing that I have got 1 binary like

1 0 1 1 0 1 the place value for this is 2 raise to the power 0, here it is 2 raise to the power

1, 2 raise to the power 2, 2 raise to the power 3, 2 raise to the power 4, 2 raise to the

power 5 and it is decoded value will be 2 raise to the power 5 is 32, 2 raise to the power

4 is 16, but it is multiplied by 0. So, no contribution next is 2 raise to the power 3 is 8 2



raise to the power 2 is 4, 2 raise to the power 1, but it is it is multiplied by 0. So, no

contribution and 2 raise to the power 0 is 1. 

So, we can find out the decoded value for this is particular and that is nothing, but 32

plus 8. So, 40 plus 4 44 plus 1 so 45 so the decoded value for this particular binary string

is 45. So, this is the way actually we will have to calculate the decoded value and once

we have got the decoded value, now I can find out the real value provided x 1 minimum

x 1 maximum and l is known to us and using this particular linear mapping rule. So, I

can I can find out what should be the real value for this particular the x 1.

Now, by following the same procedure so I  can also find out the real  value for this

particular the x 2 and once we have got the real values for this particular x 1 and x 2.

Now I can substitute the values for x 1 and x 2 in the expression of objective function

and I can find out what should be the your the function value.
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Now, once  we  know how to  find  out  the  function  value  for  each  of  this  particular

solution each of this particular the binary staring for the whole population I can find out

the fitness information and once I have got the fitness information like f 1 f 2 up to f n

then how to proceed further. So, that I am going to discuss.

Thank you.


