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Let me solve one numerical example using steepest descent method.
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The problem is as follows. So, I will have to minimize y is a function of 2 variables x

one and x 2 and that is equals to 4 x 1 square plus 3 x 2 square minus 6 x 1, x 2 minus 4

x 1 subject to the condition that x 1, x 2 align between minus 10 to plus 10.

So, this is an unconstraint optimization problem and there is no functional  constraint

here. Now this shows the function plot and here we can we will have to find out the

minimum point.
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Iteration 1, we take the initial random solution that is capital X 1 that is 0 0, now capital

X 1 is a collection of the small x 1 and small x 2 values we calculate the function value

that is f 1 and that is nothing, but f of capital X 1, and if you substitute the values of x 1 x

2 in the objective function. So, he will be getting 0.0.

Now, I will try to find out the gradient of this particular the objective function. Now

gradient of this particular function is nothing, but delta f is a collection of the partial

derivative of f with respect to x 1 partial derivative of f with respect to x 2, and if we try

to find out the gradient. So, del f del x 1 that will become 8 x 1 minus 6 x 2 minus 4 and

the partial derivative of f with respect to x 2 is nothing, but minus 6 x 1 plus 6 x two.

So, this is the gradient of this particular the objective function. Now on once I have got

the gradient now I can find out the value of this particular gradient with respect to capital

X 1, and if I substitute the values of a small x 1 and x 2 here. So, I will be getting minus

4 0.
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Now, the search direction is nothing, but opposite to the gradient. So, minus delta f 1 and

that is nothing, but 4 0, because this is a steepest descent method. So, we will have to

move in a direction opposite to the gradient.

Now, x 2 that is a next solution is nothing, but the previous solution x 1 plus lambda 1

star multiplied by S 1. Lambda 1 star is nothing, but the optimal step length and S 1 is

the search direction. To determine the optimal value of this step length that is lambda 1

star we follow a particular method. So, we try to find out f of capital X 2 and that is

nothing, but f of capital X 1 plus lambda 1 S 1.

Now, if I just substitute the value here. So, this will become like f of x 1; x 1 is nothing,

but is your 0 comma 0 and 0 plus lambda 1 and S 1 is nothing, but 4 0. Now this can be

written as f of. So, 0 plus 4 lambda 1 that is 4 lambda 1 comma 0 plus 0. So, this will

become  0.  Now  we  substitute  this  in  the  objective  function  the  expression  of  the

objective function, now expression of the objective function is as follows like f of x 1, x

2 is nothing, but 4 x 1 square plus 3 x 2 square minus 6 x 1, x 2 minus 4 x 1.

Now, if I substitute the values for these x 1 and x 2 like x 1 is 4 lambda 1, and small x 2

is equal to 0. So, I will be getting one expression for this f x 2.
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And that is nothing, but 64 lambda 1 square minus 16 lambda 1. Now here now it has

become a function of only one variable that is lambda 1, and to find out the optimal

value for this lambda 1. So, what we can do is, we can find out the derivative and put

equals to 0.

So, we find out the derivative that is df d lambda 1 and that is nothing, but 128 lambda 1

minus 16 and we put equals to 0, and solve for lambda 1. Now this lambda 1 star this

will become 16 divided by 128 and that is nothing, but 1 by 8.
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So, this is actually the optimal step length. Now I am going to use this the value of the

optimal step length to find out X 2 and X 2 is nothing, but 0 plus lambda star is 1 by 8

into the search direction that is 4 0 and if you simplify I will  be getting half 0; that

means, small x 1 is equal to half and small x 2 is equal to 0.

Now, f 2 is nothing, but f of capital X 2 and if I substitute the values of small x 1 and

small x 2, I will be getting the function value that is nothing, but minus 1.0. Now we try

to find out the gradient of the function at capital X 2, now delta f 2 is nothing, but delta f

capital X 2 and if I calculate we will be getting 0 minus 3 and that is not equals to 0 0.

So, the termination criterion is not fulfilled. So, therefore, we say that x 2 is no not the

desired optimum point and we will have to go for the next iterations. Now this completes

one iteration  of  this  particular  algorithm,  similarly  we will  have to  use a  number of

iterations and ultimately he will be getting the optimal solution using steepest descent

method.

Now, I am just going to see the advantages of these steepest descent method, now this is

a very fast algorithm. Now as the search direction is opposite to the gradient and by

definition gradient is the direction along which the rate of change of the function will be

the maximum. So, this is the in fact, the fastest algorithm.
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Now, this algorithm is very easy to implement and to understand and it is very straight

forward;  however,  it  has  got  some limitation  which  is  as  follows.  Now here  in  this

particular algorithm there is a chance of the solutions for getting trapped into the local

minima. The reason is the gradient is a local property. So, there is every possibility that

the solution is going to start at the local minima. The concept of local minima let me

explain now supposing that I have got a function y is a function of only one variable.

Now, if I just plot it supposing that this is y this is x, and I am getting a plot now this is

very hypothetical plot now the plot is as follows.
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Now, here, this basin is nothing, but the local basin and this is a global basin and this is a

minimization problem, this point is actually the locally minimum point and this is the

globally minimum point.

Now, here there is a possibility that if we start from the local basin if the initial solution

is lying in the local machine. So, there is a possibility to gradually it is going to hit this

locally optimal solution, and as there is no guarantee that the initial solution is going to

lie  in  the  global  basin,  I  have  got  no  guarantee  that  I  will  be  getting  the  globally

minimum solid solution always. So, this is one of the limitation of this particular the

algorithm.
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Now, I am just going to discuss the drawbacks of traditional optimization methods. Now

before I start with the discussion on the drawbacks, let me tell you that till now we have

discussed a few traditional tools for optimization I started with the analytical approach

and we concentrated on a problem having only one variable and we have seen how to

solve it. So, after that we discussed one numerical method namely the exhaustive search

method, and we solve to an numerical example also to explain it is the principle.

So, after that we will concentrated on a direct search method namely the random work

method, and we solve another numerical example. And at the end I discuss the working

principle of one gradient based method that is steepest descent algorithm and its principal

has been explained with the help of one numerical example.

Now, with  this  I  am just  going to  put  the drawbacks of  the  traditional  optimization

methods.  Now in traditional  optimization tools we will  start  with one initial  solution

selected at random, and the final solution depends on the quality of the initial solution.

Now if you select the initial solution in the local basin. So, we will be getting optimal

solution and if you are lucky enough to select the initial solution in the global basin then

only you will be getting the globally optimal solution.

Now, the gradient based method like the steepest descent method is not suitable for the

objective function, whenever it is found to be discontinuous because we cannot find out

the gradient of the objective function.
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Now, here there is a chance of the solution of the gradient based method to get stuck at

the local  minima.  Now local minima is actually  a minima,  which is not the globally

optimal one and we thought that there is the optimal, but there is a chance of further

improvement of the solution, which we could not hit. So, this is an inherent problem of

the gradient based method. Now this method the traditional methods for optimization

cannot be implemented in parallel computing.

Now, what you do in parallel computing we try to minimize the effective CPU time for a

complex optimization  problem,  because  for  a  complex optimization  problem it  takes

more amount of time to give the solution. So, here what you do is we use a number of

CPUs and the minimum number of CPU is 3, and we distribute the total competition in

several computers several CPUs and we use one algorithm that is called MPI algorithm

that  is  message  passing  instruction.  Now  with  the  help  of  this  MPI  algorithm,  the

information from one computer is going to be passed to the next computer and vice versa

and this multiple CPUs are going to talk to each other I should say and they are going to

send information to each other and ultimately we will be getting less competition time

the effective less competition time to solve this particular the problem.

Now, as the traditional optimization tool, works based on only one initial solution, we

cannot  implement  the  concept  of  parallel  computing,  in  case  of  the  traditional

optimization tool.
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Now,  here  in  traditional  optimization  tool  we  face  some  problem  to  tackle  the

optimization whenever there is or there are integer variables and tackle in the integer

variables  is  bit  difficult  and sometimes  we face  some problem that  is  mixed integer

problem, and there it creates for the problem and to solve that special type of problem.

So, we use a special type of algorithm that is called integer programming technique.

Now, here  in  traditional  tools,  a  particular  traditional  optimization  tool  may  not  be

suitable to solve a variety of problems. So, it is not robust. Now these are the drawbacks

of the traditional optimization methods and to overcome these actually what I do we take

the help of some sort of nontraditional optimization tools.

Now, before I go for this nontraditional optimization tool, let me summarize whatever I

discussed on the traditional  tools.  We have discussed the working principle  of a few

traditional optimization tools. Now out of all search tools there is one tool which we

have already discussed that is the random work method, in which the search direction is

selected at random and there is no guarantee that it is going to hit the optimal solution

and it may take a large number of iteration. So, in one side we have got the random work

method and on other  side we have  got  a  very structured algorithm like  the  steepest

descent  algorithm,  for the search direction  is  predefined and that  is  nothing,  but  the

opposite to the gradient.



And as I told that this is the fastest algorithm. So, on one side we have got the random

work  method,  other  side  we  have  got  the  steepest  descent  method  and  each  of  the

methods is having its own merits and demerits. Now what you want is we want some

robust optimization tool, which is in between of this; your the random work method and

the steepest descent algorithm and it will be robust to solve a variety of complex real

world optimization problem, and that is why the concept of nontraditional optimization

tool has come into the picture.
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Now, I am just going to discuss little bit on nontraditional optimization tools. Now this

nontraditional optimization tools or working based on the principle our nature is going to

follow. So, these are all nature inspired tools or biological inspired tools. Now if I see the

literature we have got a large number of nontraditional tools for optimization the list is

very big. For example, say we have got the technique like genetic algorithm, which was

proposed  in  the  year  1965,  then  we  have  got  genetic  programming  then  simulated

annealing,  we  have  got  evolutionary  strategies,  then  we  have  got  evolutionary

programming ant colony optimization, differential evolution that is the modified version

of genetic algorithm, then we have got particle swarm optimization, we have got cultural

algorithm this is once again another modified version of genetic algorithms and others.

The list is very big we have got some other nontraditional optimization tools also.



Now, here in this particular course what I am going to discuss some of the nontraditional

optimization tools and I will be discussing their working principles with the help of some

suitable numerical examples. For example, I am going to start with the working principle

of genetic algorithm, now if you see the literature we have got various versions of this

particular  genetic  algorithm,  it  includes  the  binary  coded genetic  algorithm,  the  real

coded genetic algorithm, grey coded genetic algorithm, then comes your the micro g a

messy GA and so on. Now here in this particular course I am going to discuss in details

the  working principle  of  the  binary  coded genetic  algorithm,  the  real  coded genetic

algorithm, the first genetic algorithm like the micro GA, visualized interactive GA, and

then I am going to discuss a special type of GA for solving the scheduling problem and

that is known as the scheduling GA. I will also be discussing the principle of simulated

annealing.

Now, here actually what we do is, we try to model artificially the cooling process of

molten metal and try to solve the minimization problem. And I am also going to discuss

in details the working principle of particle swarm optimization, and here actually we are

having a  few advantages  over  the genetic  algorithm.  So, those things  I  am going to

discuss in details with the help of some numerical examples.

So, all such tools the nontraditional optimization tools are having their own merits and

demerits, and we will try to take their merits and we can try to overcome their demerits

and we can also develop some sort of the intelligent optimization tools. So, gradually I

am just going to move towards that particular the direction.


