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A Practical Optimization Problem (Contd.)

Now, I am going to discuss how to use the concept of the steepest descent method to

solve the same optimization problem.
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That is how to find out the optimal design of this particular the single point cutting tool.

Now as I told that steepest descent method is actually one of the most popular Traditional

Tools for Optimization.

Now, let us see how to use the principle of steepest descent method to solve this real

world  optimization  problem.  Now here  we start  with one  initial  solution  selected  at

random that is b h 1 that is nothing, but 0.06 0.05. Now, this initial solutions is selected

at random and let us see how to proceed with this particular the iteration, iteration 1.

So, we will start with the initial solution we start with the initial solution that is b h 1 that

is nothing, but 0.0 6 0.05. We calculate the function value m 1 prime, that is 1572 b h and

if we just substitute this part b b is 0.0 6 h is 0.05. 



So, I will be getting 4.7 2 kg. So, this is the mass of this particular the single point

cutting tool and here the search direction is opposite to the gradient.

So, what will we have to do is we will have to find out the gradient of this particular

objective function that is nothing, but delta m prime that is the partial derivative of m

prime with respect to b partial derivative of m prime with respect to h. 

And here if I use the partial derivative so, with respect to b I will be getting 1572 h with

respect to h I will be getting 1572 b. And if I substitute the values of this b and h so, I

will be getting 78.6 and 94.3.

This is actually the gradient information of the objective function. 

(Refer Slide Time: 03:02)

Now here the search direction should be opposite to the gradient, because this is this

particular  algorithm can solve the minimization  problem and it  moves in  a  direction

opposite to the gradient that is why that is called steepest descent method. 

So, the search direction is nothing, but S 1 is minus delta m prime and that is nothing, but

minus 78.6 minus 94.3 and if I substitute the values. So, I can find out what should be

this particular b h 2; that means, what will be the next solution.

So, b h 2 is nothing, but b h 1 plus lambda 1 multiplied by S 1 lambda 1 is actually the

step length and here we will try to find out what should be the optimal step length. And S



1 is nothing, but the search direction which I have already calculated. So, S 1 is known,

but I will have to find out what is the optimal value for this particular the lambda 1?

Now, to determine the optimal value of this particular lambda 1 so, what we do is we

substitute the values of this b and h b h 1 is nothing, but 0.06 0.05 plus lambda 1 into S 1

S 1 is nothing, but this. So, we substitute and we will be getting this and if you simplify.

So, we will be getting this particular the expression.

Now, you see that both b and h are function of only 1 variable that is nothing, but lambda

1. So, b is nothing, but a function of lambda 1 and your h is actually another function of

your this particular lambda 1. Now what you can do is we can actually take, we can find

out what should be this particular lambda 1 star that is yours.
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Now to find out the lambda 1 star actually what we do is we will substitute the values of

this b and h in the expression, we substitute the value of b and h in the expression of

objective function.

So, m 2 star is nothing, but your 1572 into b b is nothing, but 0.06 minus 78.6 lambda 1 h

is nothing, but your 0.05 minus 94.3 lambda 1 and if you simplify. So, I will be getting

this particular expression. And now actually we can see that your this m 2 is a function of

lambda 1.
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Now, to find out the optimal value of this particular lambda 1 what we do is we find out

the derivative of m 2 prime with respect to lambda 1 and this is put equals to 0. If you

remember the way we tackle the single variable optimization problem at the beginning of

this particular the course. The same principle I am using it here and if you carry out this

differentiation put equals to 0. So, I will be getting the optimal value for this particular

the lambda 1 star.

Now, what is this this is nothing, but the optimal step length. Now till now we have

considered we have determined the optimal search direction and the optimal step length.

And once you have got those 2 things, now I am in a position to find out this b h 2 and

here the b h 2 if you see the earlier expression of this. So, 0.0 6 minus 78.6 lambda 1

0.05 minus 94.3 lambda 1, so those things if you put here so, I will be getting what

should be the values for b and h in the next iteration.

And if you calculate so you will be getting the values like b is 0.0 0 9 and h is nothing,

but minus 0.0 1 1. So, this type of possible solutions we are getting for this particular b h

2.

Now, we will have to check the feasibility of this particular solution. Now to check the

feasibility first let us concentrate on b b is coming to be equal to 0.0 0 9. So, this is lying

within it is range, but you can send it on h is minus 0.0 1 1. Now that means, this is

negative, now this h cannot be negative first of all. 



And moreover using this particular principle whatever h we got that is also coming out of

this particular the range of the variable.

This is actually one of the serious drawback of this particular the so, called very popular

traditional tools for optimization that is steepest descent method there are some other

drawbacks, which I already discussed, but let me once again mention that particular the

drawback. 

Now supposing that that we are solving a problem optimization problem having said 2

variables like b and h. And there is a possibility that there could be there could be some

local minima problem and this local minima problem occurs due to the search direction.

Now, if you see the surface of the objective function as this is a function of 2 variable.

So, the surface is in 3 dimension. So, we can visualize we can plot that particular the

surface of the objective function as a function of b and h. 

For example, if we want we can just draw the b and h as a function of this particular your

for example, say if I consider say this is nothing, but say b this is nothing, but h and this

is your. So, this particular objective function let me consider this is m prime.

Now, we can visualize the surface of this particular  objective function which is in 3

dimensions  and  this  particular  gradient  is  actually  a  local  property  of  the  objective

function.  Now supposing  that  there  are  some  undulation  of  this  particular  objective

function, it is hypothetical there are some undulation ups and downs and all such things

there is a possibility, that this particular algorithm is going to a get stuck at the local

minima, because gradient is a local property. 

So,  in  at  a  particular  point  in  a  particular  basin  there  could  be  a  particular  search

direction,  but  that  will  vary from point  to  point  your  basin to  basin.  And there  is  a

possibility  that  this  particular  algorithm is  going to  hit  your  that  particular  the local

minima problem and it may not be able to reach that globally optimal solution. 

But on the other hand this particular algorithm is very fast particularly for the unimodel

function,  but  fortunately  or  unfortunately  for  the  real  world  problem  there  is  no

guarantee  that  you will  be  getting  a  very  well  defined  in  unimodal  surface  for  this

particular the objective function.



And that is why our experiences most of the time this particular algorithm is going to fail

to solve the real world optimization problem. Now supposing that say here we did not

get the feasible solution, but supposing that we are getting some feasible solution. And

the values of b and h are lying within the respective ranges, but till now whatever we

have solved is the unconstrained optimization problem. Like single point cutting tool, we

want to find out the optimal design, but we did not consider the functional constraint till

now.

So, what you will have to do is once this particular solution is found to be better we are

going to keep it if an only if the functional constraint is not violated. So, once we have

got some feasible solution for b and h. Now we check it is feasibility further through this

particular the functional constraint, if that particular constraint is fulfilled then only we

declare that this is a valid solution for the next iteration.

And this completes actually 1 iteration and this will go on through a large number of

iteration and ultimately through a large number of iteration there is a possibility that you

will be getting some optimal solution, but of course, there is no guarantee that we will be

getting the optimal solution and even if we get there is once again no guarantee that will

be the globally optimal solution or the globally minimum solution. 

So, till now to solve this particular real dual problem we tried with 2 traditional tools for

optimization. Now you see these both the traditional tools for optimization showed some

difficulty in solving even this particular very simple real world problem. And now I am

just going to show you how to use the non-traditional tools for optimization and we will

see that these type of problems can be tackled very easily and efficiently using some

non-traditional tools for optimization.

Now, what I am going to do next the same real world problem, I am just going to use

some non-traditional tools for optimization to solve it and the performance of these non-

traditional tools for optimization to solve the same real world problem I am just going to

discuss and compare 1 after another.

Thank you.


