
Traditional and Non-Traditional Optimization Tools
Prof. D. K. Pratihar

Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 17
Scheduling GA

Start.

Now, I am going to start with another topic and that is on scheduling GA now I am just

going to discuss in details how to solve the scheduling problem with the help of a genetic

algorithm. Now to start with let me tell you that the scheduling optimization problem is

slightly different from the ordinary optimization problem like the optimal design of

gearbox, optimal design of spring and so on. Now this scheduling problem is slightly

different and more complex now let me try to find out the reason behind this complexity

of the scheduling problem.

(Refer Slide Time: 01:03)

Now, what you do in scheduling problem, we try to find out the position and at the same

time we try to find out the order and adjacency of the different elements in scheduling

problem. Now let me take a very simple example, supposing that there is a travelling

sales person and there are n cities, now the sales person will have to touch all n cities

once by covering the minimum distance. So, this is a typical example of a scheduling

problem.

Now, another example I can take supposing that. So, we will have to find out the class

schedule of an institute that is nothing, but a scheduling problem or say jobs of

scheduling problem is another example. Now this type of optimization problem are

slightly more difficult compared to the ordinary optimization problem like the example I

took like the optimal design of gearbox and so on.

Now, if I consider that type of optimization problem where only we consider the position

or where we consider only the numerical values, but their order is not important. So, that

type of optimization problem if I call, that this is a scalar optimization problem then

scheduling optimization problem is nothing, but a vector optimization problem. And as I

told that scheduling problem is much more difficult compared to the ordinary

optimization problem, and that is why we will have to take some care to solve. So, this

type of optimization problem which is much more difficult using a genetic algorithm,

and I am just going to discuss that to solve this type of optimization problem. So, we will

have to use some special type of operators those things I am going to discuss in details.

Now, if you see the scheduling problem, the scheduling problem could be either

symmetrical or it could be asymmetrical now let me take one example.

(Refer Slide Time: 03:39)

Now this is one scheduling problem where a particular city is connected to all other cities

in both the directions.

(Refer Slide Time: 03:41)

So, this a fully connected TSP and this is also a symmetrical TSP provided the distance

between 1 and 3 becomes equal to the distance between 3 and 1. So, let me repeat. So,

here this is a fully connected TSP and this can be called symmetric, if and only if the

distance between 3 and 4 is equal to the distance between 4 and 3.

Now, on the other hand we have got the partially connected TSP, where some of the

connectivity is missing. For example, here there is a connectivity between 2 and 6, but

there is no connectivity between 6 and 2. So, the connectivity is there only in one

direction. Now this type of TSP is known as the partially connected TSP and as it is

partially connected it has to be asymmetrical TSP. On the other hand the fully connected

network it could be either symmetric or asymmetric, but this partially connected TSP has

to be asymmetrical TSP. So, this is the way actually we classify the scheduling problem

or the travelling salespersons problem.

Now, let me take one example let us try to see the complexity of this type of problem,

and let me repeat the statement of the problem that there are n cities and a particular

travelling sales person will have to touch all n cities ones by covering the minimum

distance, how to find out the optimal schedule so that he or she can reach all the cities

once by covering the minimum distance. Now to understand the complexity let me take a

very simple example, supposing that I have got only 4 cities.

(Refer Slide Time: 05:58)

So, there are 4 cities 1 2 3 and 4, now out of these 4 cities I have decided that I am going

to start with city 1.

Now, if I start with city 1 next it could be city 2, city 3, city 4 another possibility could

be I will start with one then 2 4 3 another possibility I will start with 1 then 3 2 4 anther

is 1 3 4 2 another is one 4 2 3, 1 4 3 2. So, if I start with city one. So, how many such

possible sequences are there? 12 3 4 5 6. So, there are 6 possible sequence. Now if I start

with city 1 there are 6 sequences similarly if I start with city 2, I will have 6 more

similarly if I start with city 3, 6 more if I start with city 4 there will be 6 more, total we

have got 24 possible sequences.

Now, the optimizer will have to find out the best sequence. Now what we do is, this 4 is

nothing, but this 24 is nothing, but 4 factorial now. So, if we have got n such cities. So, I

have got n factorial possible sequences, now GA will try to find out, out of these n

factorial sequences the best one now let me assign some numerical value supposing that

we have got n equals to 10 there are 10 cities. So, if there are 10 cities. So, there will be

10 factorial possible sequences and it is a huge number and GA will have to find out the

best one out of all the possibilities and it will be a difficult problem for the GA.

And moreover there is another problem in this type of optimization the problem, that

problem is your like there is a possibility that if we use the conventional operators like

the single point cross over, 2 point cross over, multipoint cross over or uniform crossover

we may get some children solution which could be invisible; might be the same city will

be ah copied more than once or there could be some missing city. So, that type of

children solution. So, will be getting and that is why to solve this type of optimization

problem. So, will have to use some special type of crossover operator and all such things

I am going to discuss in much more details.

(Refer Slide Time: 09:16)

So, as I told that SGA that is simple genetic algorithm with the conventional crossover

operator is not going to sub the purpose for solving the scheduling problem and that is

why. So, we will have to go for some specialized crossover operators.

(Refer Slide Time: 09:30)

Now let me start with the first operator that is edge recombination. So, that was proposed

in the year 1991 by Whitley and others now supposing that we have got 2 parents like

parent one and parent 2 and I am just going to consider a TSP involving 9 cities. So,

there are 9 factorial possibilities and GA will have to find out the best one. Now

supposing that parent one is 1 2 3 4 5 6 7 8 9 and parent 2 is 9 3 1 4 5 8 2 6 7 now using

this particular the 2 parents. So, how to find out the children solution, using the principle

of edge recombination that I am going to discuss.

(Refer Slide Time: 10:33)

Now, here we will have to depend on the edge table.

Now, edge table provides information of each city and its connectivity. For example, say

city 1 is connected to city 2 9 3 and 4, city 2 is connected to 1 3 8 and 6 3 is connected to

2 4 9 1 and so on and these shows actually the connectivity graph. For example, say one

is connected to 2. So, one is connected to 2, one is connected to 2, then one is connected

to 9. So, one is directly connected to 9 then one is connected to 3. So, it is connected to 3

and one is connected to 4. So, one is connected to 4, similarly for the other cities I can

draw the connectivity and I will be getting this connectivity graph and truly speaking this

is actually partially connected asymmetrical TSP sort of thing.

Now, if this is the situation and corresponding to the 2 parents, which have already ah

mentioned like how to find out these the child solution.

(Refer Slide Time: 11:58)

Now let us see the parent one once again. Now parent one start with city one. So, I am

just going to start with city 1 if I want to find out the child one. Now let us see how to get

child one starting from city 1 and that is the starting city of parent one also. So, let us try

to find out what should be the child one and child 2. Now let me just find out the child

one and child 2 like this.

(Refer Slide Time: 12:37)

So, child one as I told I will going to I am going to start with city one, and according to

this particular the edge recombination principal, once I have selected city 1 the all the

entries of city 1 should be removed from the right hand side of the edge table. So, one I

have selected. So, let me remove one here, let me remove one here, one here and one

here. Now city 1 has been selected now one is connected to 2 9 3 and 4 and let us see the

connectivity of 2 9 3 and 4.

Now, city 2 is now connected to 3 cities, because one has been removed then 3 is

connected to 3 cities then 4 is connected to 2 cities and 9 is connected to 3 cities; that

means, I will have to select 4 because 4 is connected to less number of cities that is 2

compared to the others now if I compare the 2 3 4 and 9, which one to be selected next.

So, out of these 4 I will have to select 4 because 4 is connected to only 2 cities that is 3

and 5. So, let me select 4 here and once I have selected 4 all the entries of 4, I will have

to remove from this particular the edge table. So, 4 is removed, 4 is removed, 4 is

removed and there is no other 4 here. And once I have selected 4 now you see 4 is

connected to 3 and 5 and 3 is connected to 2 cities 5 is connected to 2 city. So, there is a

tie; that means, out of this 3 and 5 anyone I can select. So, let me select 3 here and if I

select 3 now all the entries of 3 will have to remove. So, 3 is removed here, 3 is removed

here, and this particular 3 is removed here.

Now, 3 is connected to 2 cities that is 2 and 9, 2 and 9 now 2 is connected to 2 cities and

9 is also connected to 2 cities. So, any one you take let us take 2 now if I take now 2 has

to be removed, 2 is removed, 2 is removed, 2 is removed, 2 is removed from here now 2

is connected to 2 cities 8 and 6, 6 is connected to 2, 8 is connected to 3. So, I will have to

select 6 because 6 is connected to 2 cities only. So, let me select 6 and once I have

selected 6 you remove 6 from here, remove 6 from here, remove 6 from here. So, all the

entries of 6 have been removed. Now 6 is connected to 2 cities 5 and 7 5 is connected to

one 7 is connected to 2. So, I will have to select 5. So, let us select 5 here. So, if 5 is

selected this 5 has to be removed, this 5 has to be removed, this 5 has to be removed and

once I have removed the 5 now you look into 5. So, 5 is connected to 8. So, there is only

one option. So, you select 8. So, once 8 has been selected you remove 8, 8, 8, 8 and now

8 is connected to 7 and 9, 7 is connected to 9, 09 is connected to 7 only one. So, any one

we can take. So, let me take 7 and once I have selected 7, you remove 7 from here, here

and here and 7 is connected to9. So, 9 is selected.

So, this is child one now, you check whether all the cities have come or not. So, 1 2 3 4 5

6 7 8 9. So, all the cities have been consider once and there is no missing city. So, this

particular child solution is a valid child solution. Now similarly I can find out the child 2

also let me try to find out the child 2 also.

(Refer Slide Time: 17:46)

Now, I am just going to find out child 2. So, child 2 and the starting city for the child 2

will be 9 that is the starting city for parent 2 as I discuss. Now once I have selected 9 all

the entries of 9 will have to remove from here. So, 9 is removed 9 is removed 9 is

removed, 9 is removed, now 9 is connected to 8 1 7 and 3. Now you see 8 is connected to

3, 7 is connected to 2, 1 is connected to 3 and 3 is connected to 3. So, 7 is connected to 2

only. So, 7 is connected to 2 that is 6 at 8. So, you select 7 here and once you have

selected 7 all the entries of 7 have to be removed, 7 is removed, 7 is removed, 7 is

removed there is no other 7.

Now, 7 is connected to 6 and 8, 6 is connected to 2, 8 is connected to 2. So, there is a tie

any one you take let me take 6. Now if I take 6, this 6 I will have to remove this 6 is

removed, removed. So, there is no other entries of 6 here. Now 6 is connected to 5 and 2,

5 is connected to 2 cities and 2 is connected to 3 city. So, I will have to select 5. So, let

me select 5 here. So, once 5 is selected remove 5, remove 5, remove 5, now 5 is

connected to 4 and 8, 4 is connected to 2 cities 8 is connected to only one city. So, you

select 8 here now all the entries of 8 you remove, 8 is removed, 8 is removed, 8 is

removed, 8 is removed now you concentrate on 8, 8 is connected to 2 only 1. So, you

take 2 and you remove 2 here, 2 here, 2 here, 2 here and once I have selected 2. Now see

2 is connected to 1 and 3, one is connected to 2 cities and 3 is connected to 2 cities. So,

there is a tie you take any one. So, let me consider opted to let me consider 1. So, 1 is

removed from here one is removed, one is removed, and here also one is removed.

Now, one is connected to 3 and 4, 3 is connected to only, 4 is connected to only 1. So,

any one I can select. So, let me select 3. So, 3 is removed from here is removed from

here, 3 is removed from here, 3 is removed from here, now 3 is connected to 4. So, 3 is

connected to 4. So, 4 is removed, removed, removed that actually completes these

particular the search. Now we can find out this is 1 2 3 4 5 6 7 8 9. So, all the 9 cities

have been considered once and no city has been repeated there is no missing city also.

So, this is nothing, but a valid child. So, using this particular, the principal of edge

recombination. So, we can find out 2 valid children corresponding to the 2 parents.

Thank you.

