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Now, I am just going to start with the working principle of another very efficient or non-

linear mapping tool which is popularly known as the self organizing map in short SOM.

(Refer Slide Time: 00:31)

Now, this is actually a special type of neural network; now using this particular neural

network the self organizing map, I can also map the higher dimensional data to the lower

dimension approximately and this is one non-linear mapping tool. Now this mapping

tools are actually also known as the dimensionality reduction technique.

Now, the self organizing map was proposed by Kohonen before 1995 around 94; actually

the idea came first. Now it can be used as a visualization technique or the dimensionality

reduction technique. And here let me mention that this is a topology preserving tool; now

unlike  the  other  two methods  which  have  already  discussed.  So,  this  method  is  the

topology preserving tool; that means, here not only the Euclidean distance we try to keep

intact, but also the relative position of the second point with respect to first, we also try

to keep intact.



Let me take a very simple example;  now suppose that  we are going to consider  the

distance between Calcutta and Delhi. So, the (Refer Time: 02:06) the Euclidean distance

will have some numerical value. And in distance preserving technique, we consider only

the numerical value. 

But here in topology preserving tool not only this numerical value of the distance, but

another information we consider that is nothing, but the relative position of Delhi with

respect to Calcutta. So, Delhi is towards not with respect to Calcutta; so that particular

information is also kept intact in this type of mapping and that is why this is known as a

topology preserving tool.

Now,  it  works  based  on  unsupervised  and  competitive  learning;  now  this  is  a

unsupervised learning. Because here there is no known input output relationship and if

there  is  no  such  input  output  relationship.  So,  we  will  have  to  take  the  help  of

competitive learning. Now how to implement the competitive learning? That I am going

to  discuss  in  details.  Now this  is  nothing,  but  non-linear  generalization  of  principal

component analysis PCA.

Now, principal component analysis is a very efficient tool for linear mapping, but here

we are going for non-linear mapping. And for this non-linear mapping, we are going to

use self organizing map and which is nothing, but a non-linear generalization of this

linear mapping tool; that is the principal component analysis. It consists of two layers

input layer and competition layer; now on the competition layer there will be three basic

operations  like  competition,  cooperation  and  updating.  So,  how  to  implement  this

competition, cooperation and updating? So, that I am going to discuss in details.



(Refer Slide Time: 04:23)

Now, this shows actually the schematic view of this particular the self organizing map.

Now let us try to understand what is there? Now suppose that on the input layer; that is

in higher dimension say L dimension. So, this input layer is an higher dimension say L D

and we have got the competition layer say that is in say lower dimension say 2 D. 

So, on L D the higher dimension we have got a large number of data points say capital N

number of data points. So, our aim is to do the mapping from this higher dimension to

the lower dimension; that means, on the lower dimension I will have to find out capital N

number of data points.

Now, how to do it that; I am going to discuss, now suppose in that out of this capital N

data points; lying on the input layer, I am just concentrating on a particular data point

that is the i-th data point. Now i-th data point is represented with the help of i-th neuron

and neuron we know; in biological nervous system neuron is nothing, but the unit; unit

of  the  biological  nervous  system.  So,  here  artificially  we  copy  that  particular  the

biological neuron; now let me assume that so this particular circle is going to represent a

particular neuron and which is also going to represent the i-th data point.

Now, similarly  we have  got  capital  N number  of  data  points;  that  means,  capital  N

number of neurons here. Now for the time being, let me concentrate on this particular the

i-th neuron or the i-th data point; now how to represent this i-th data point? Once again I

will have to consider the there dimension if it is L D. So, there will be capital L number



of numerical values to represent this particular the i-th input data point. And now I will

have  to  find  out  the  corresponding data  point  in  the  lower  dimension that  is  in  the

competition layer.

Now, how to get it? To get it actually what we will have to do is; first we will have to

represent; so, this particular data point in higher dimension.
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Now let me start with the competition; so, here as I told that a particular data point that is

X i is represented by capital L or small m; here I have kept small m is equals to capital L.

So, this small m is nothing, but capital L; so, e particular data point; the i-th data point is

represented by small m number of numerical values or capital L number of numerical

values. So, X i is nothing, but X i 1 comma X i 2; the last term is X i m transpose or I

varies from 1, 2 up to N I am here as I told I have assumed small m is equals to capital L.

This is how to represent the data point on the input layer that is in a higher dimension.

Now what you do is I am just going to find out what should be the corresponding data

point in the lower dimension that is on the competition layer? Now to do this actually

what you do is; corresponding to this particular the data point; what we do? We generate

some synaptic weights denoted by W j i. Now W j i is nothing, but the synaptic weight or

the connecting weight between the input i and the neuron lying on the competition layer

and that particular neuron or the data point is nothing, but j.



So, initially we do not know where the j is. So, what you do is we generate W j i that is a

connecting weight between the input neuron i and the data point j which is lying on the

competition layer and what you do is we generate a large number of connecting weights.

So, what is the number? 

Now generally what you do is if there are 1000 data points to be mapped corresponding

to a particular data point. So, we generally generate 1000 this type of connecting weight

that is W j i. Now to represent a particular W j i once again; I will have to take the help

of small m numerical values like w j y i 1 comma W j i 2 comma the last term is W j i m.

So, all such connecting weight values will  be generated at random using the random

number generator.

Now, let  me let  me go back to the earlier  slide where we showed this particular the

schematic  view.  Now  let  me  once  again  concentrate  here;  so  what  you  do  is

corresponding to this  particular  input.  So,  we generate  a large number of connecting

weights denoted by W j i and as I told we generally consider 1000; this W j i values and

to represent a particular W j i, we use small m number of numerical values lying between

0 and 1; supposing that we have generated 1000 W j i values.

Now, once  I  have  generated  those  W j  i  values  at  random;  now I  can  do  is,  I  can

determine the Euclidean distance between the i-th data point and all such W j i values.

So,  how  many  Euclidean  distance  values  will  be  getting?  I  will  be  getting  1000

Euclidean distance values. And that is nothing, but the Euclidean distance between the i-

th input point and the W j i that connecting weights. 

So, I will be getting like 1000 Euclidean distance values and we compare their numerical

values and try to find out one point or one connecting weight, which is closest to this

particular the i-th data point. And the data point or the connecting weight which is found

to be closest to the i-th data point is declared as the winning point or the winning neuron.

Suppose this is the winning neuron or the winning or data point in lower dimension; now

it is not in lower dimension till now it is in higher dimension. So, corresponding to this i-

th data point; I can find out this particular winner; that means, the winner W j i values.

Now once you have got this particular winner; so, what you do is the competition that

particular operation of competition is actually over. And when this competition is over;



so we are able to declare the winner. So, once you have got this particular winner; now

there will be some sort of updating.

(Refer Slide Time: 12:37)
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Now, there will be a corporation; now what I do is corresponding to the i-th data point on

the input layer. So, I have got one winner and that is nothing, but winner connecting

weight and suppose that we have got the winner connecting weight here and surrounding

that winner. So, we are going to design one neighborhood and generally we take the help

of some sort of Gaussian distribution to represent the winner and its neighbourhood. 



So, surrounding the winning neuron actually we try to find out a neighborhood of excited

neuron.  And  there  will  be  some  interaction  between  the  winner  and  this  excited

neighbourhood and there will  be updating  of the synaptic  weights or  the connecting

weights.

Now, how to implement that? To implement that actually what we do is; we take the help

of  one  Gaussian  distribution  as  I  told.  Now  here;  so  for  this  Gaussian  distribution

actually we try to represent in this particular form that is h j n x i. So, this n x i is the

winner; j indicates a never of that particular winner and this h j n x i is used to represent

that Gaussian distribution of this particular the neighbourhood.

Now this is nothing, but exponential minus d j n x i square divided by 2 sigma t square.

Now what is this d j n x i? So, this d j n x i is a lateral distance between the winner and

the excited neuron j.

Now, let me just draw it here; now as I told that we are going to consider some Gaussian

distribution to represent this neighborhood. Now suppose in that I have got a Gaussian

distribution something like this. So, this is the Gaussian distribution and it has got the

mean and standard deviation; say this mean actually the mean properties are properties of

that particular winner.

And this Gaussian distribution will have some sigma t; that is standard deviation. So,

once I know the mean properties and standard deviation, I can draw this particular the

Gaussian distribution which is nothing, but the neighbourhood.

Now, as I told that the mean properties will be decided by the properties of the winner or

the properties of the leader. And if I take the plan view; so might be I will be getting this

type of plan view for this the Gaussian distribution. Now, this is almost similar to the

situation that in one department; there are a few professors working in different areas, as

if each of the professors are widen and leader.

And surrounding the professor there will be a few students working for there say PHD’s

or M Tech. Now; so, surrounding this professor, so there will be a few followers or the

students and this will generate one Gaussian distribution sort of thing. It is almost similar

to this type of situation; now what happens is this particular sigma t, we do not consider



to  be  a  constant;  instead  we  vary  this  particular  the  sigma  t.  So,  how to  vary  this

particular sigma t? Now to vary this particular sigma t, actually what we do?

(Refer Slide Time: 16:54)

So, we take the help of one mathematical expression; that is sigma t is nothing, but is

sigma naught exponential minus t divided by tau. So, this sigma t is nothing, but the

standard deviation at t th iteration and this sigma naught is actually the initial value of

the standard deviation; that is the fixed quantity. Now here if we write down that sigma t

is nothing, but sigma naught exponential minus t divided by tau.

So, t is the iteration number; tau is the maximum number of iteration which is having the

fixed value. So, as t increases; that means, as iteration proceeds what will happen to this

particular sigma t? The sigma t is going to be reduced; so, initially there will be higher

sigma t and with the number of iteration, the sigma t is going to be reduced. Now what

does that mean? 

Now if I draw that particular Gaussian distribution once again. So, I will be getting; so,

this type of Gaussian distribution for the neighborhood and if I take the plan view might

be it something like this. And this it has got a mean property that is the property of the

professor; the leader and here we have got this particular sigma t.

Now, as I told with the number of iteration the sigma t is going to be reduced. So, might

be in the next iteration; the Gaussian distribution could be something like this. And here



accordingly the plan view will  be something like this;  now once again next iteration

there is a possibility I will be getting; so, this type of sigma t. So, the plan view will be

something like this; now what does it mean? It means that with the number of iteration

the neighborhood is going to shrink and within the neighbourhood the excited members

the excited students and the professor there will be lot of interaction. And through this

particular interaction both the professor as well as the students are going to learn a lot.

So, both the students as well as the professors will be benefited through this particular

the cooperation. So, this is actually the principle of cooperation; now this principle has

been copied in the artificial  way just to implement the cooperation in self organizing

map. Now once is this particular cooperation is over. Now how to update the connecting

weights or how to update there, the level of knowledge, so that I am going to discuss.

(Refer Slide Time: 19:55)

Now we go for the updating; now this is the rule for updating. Now if you see; so this W

j i t plus 1; that means, what will happen to the connecting weight between the input X i

and the point lying on the competition layer; that is the jth one.

So, this is the connecting weight; so, what will happen to the value at t plus 1 th iteration

that  depends on the value of the connecting  weight at  t  th  iteration plus eta  t  is  the

learning rate. Then comes h j n x i is the neighborhood function into X i minus W j i t; X

i is nothing, but the input vector in higher dimension W j i is the connecting weight in

higher dimension. So, this is actually the rule for updated and using this principle of



updating both the professors as well as the students are going to update their knowledge

level and both will be benefited.

So, this particular principle has been copied here; that means, if you follow these for a

number of iterations, ultimately corresponding to a particular input data point X i; I will

be getting only one updated W j i connecting weight. Now once again let us go back or

to the schematic view. So, which we consider for the self organizing map; now this is the

schematic view, so corresponding to this particular the i-th data point.

(Refer Slide Time: 21:56)

So, I have got say one connecting weight say this is the connecting weight updated one.

Now  same  principle  you  follow  for  all  the  remaining  N  minus  1  input  data.  So,

corresponding to this you try to find out another connecting weight and its updating.

Corresponding to this another W j i value I will be getting; corresponding to this another

connecting weight I will be getting. So, corresponding to capital N data points here, so I

will be getting capital N connecting weights and its updated values; now what you do is.

so, all such connecting weights are in higher dimension, in m dimension or capital L

dimension.

Now I will have to go for mapping; so, how to do this particular the mapping? Now to

implement the mapping; actually what you do is we follow a principle which I am going

to discuss in details.
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Now, so till now corresponding to each of the data points. So, I have got one connecting

weights  the  updated  value  for  the  connecting  weights.  Now we  have  got  capital  N

number of data points; so, we have got capital N number of the connecting weights or the

synaptic weights.

Now what you do is these synaptic weights are in m dimension or capital L dimension;

that is the higher dimension. So, starting from the origin of this higher dimension; I can

find out the Euclidean distance of all the connecting weights.

Now, we have got capital N number of connecting weights. So, I will be getting capital N

number of Euclidean distance values and once you have got all such Euclidean distance

values; now I can sort them in the ascending order. That means, the connecting weight

which  is  having  the  minimum  Euclidean  distance  value  from  its  origin,  will  be

considered first and so on. 

So, what you do is we sorting all such connecting weights that is the W values in terms

of their  Euclidean distance values; counted from its origin in higher dimension. Now

supposing that I am getting that particular order in ascending.

Now, suppose that C 1 is having the minimum Euclidean distance values followed by C

2,  C 3 and this  is  the C N.  Now what  we do is  in  lower  dimension that  is  in  two

dimension  considering  the  numerical  value  of  the  Euclidean  distance  in  a  higher



dimension, we try to draw some circular arc. Now this is the origin in lower dimension

and considering the Euclidean distance between the origin of the higher dimension and

the  connecting  weights,  which  is  closest  to  that  origin;  we  consider  first  and  this

particular  radius  is  equal  to  the  Euclidean  distance  of  that  particular  point  in  higher

dimension.

So, what we do is we draw one circular arc here. So, we draw one circular arc here

similarly with the radius equal to the Euclidean distance of the next connecting weight,

we draw another circular arc here and we just go on dawing all such circular arcs here.

And now on the first circular arc, we can select any point at random. 

Now let me consider; let me select this particular point and once I have selected this

particular point I also know the Euclidean distance between the closest the connecting

weight and the next closest connecting weight. And considering that particular numerical

value  I  draw one circular  arc;  on  the  second circular  arc  and I  will  be  getting  one

intersection point that is P 2 and following the same principle. So, I can find out P 3;

starting from P 2.

Similarly, I can also find out P 4 starting from P 3; so I will be getting all such points

here; that means, all capital N points here in 2 d; that means, starting from the higher

dimension that is L dimensional space; all capital N data points I can do the mapping to

the the lower dimension. Now using this particular the method; there is a self organizing

map there is a possibility  that  we will  be getting a very good mapping in the lower

dimension.



(Refer Slide Time: 27:28)

Now, to test the performance; so, what you do is we take the help of say one test function

say very famous Schaffer’s F 1 test function. Now this is the mathematical expression of

this particular the Schaffer’s test function.

Now, this is in 5 dimension because here we can see that summation i equals to 1 to 4 X i

square; that means,. So, this particular function is it 5 D; 5 dimension and we cannot

visualize in 5 dimension. So, we can visualize only up to the 3 dimension; now what you

do is.  So,  this  particular  function  cannot  be  drawn in  5  dimension  and  that  is  why

approximately actually we draw it in three dimensional like this.
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So, this is the 3 dimensional plot of this particular test function and here we consider y is

a function of only two variables; that means, the other two variables are assumed to be

constant and we can find out the approximate plot of this particular the function and our

aim is to find out the minimum point of this particular the function.

(Refer Slide Time: 28:54)

Now, what we do is; so we try to compare the quality of the mapped data points using the

three different techniques which I have already discussed. For example, so, what we do



is supposing that; so this particular test function like Schaffer’s test function we want to

minimize with the help of a genetic algorithm. 

So, this particular surface of the objective function is in five dimension. So, we cannot

visualize; what we do is, we generate 1000 data points on the surface of this particular

objective function in 5 dimension. And we do the mapping in two dimension for all 1000

data points using three different  techniques  like Sammon’s non-linear  technique then

comes the visor algorithm and the self organizing map.

Now, this shows actually the quality of the mapped data points; now you can see that

Sammon’s non-linear mapping. So, here the data points are well distributed and it will

help us to visualize; on the other hand if you see the quality of the map data using visor

algorithm the data points are coming very close to each other; they are clubbed together

and it is bit difficult to visualize them.

And if you see the quality of the map data; obtained using the self organizing map here

also the data points are well distributed. So, it is bit easy to visualize; so in terms of

visualization capability the Sammon’s non-linear mapping and this the visor is this self

organizing map mapping are good compared to the mapping obtained using the visor

algorithm.

But,  if  I  compare  in  terms of  the  computational  complexity, or  if  you see the  visor

algorithm is the fastest out of these three. So, within in one iteration only; so it is going

to give this particular the map data point. On the other hand the Sammon’s non-linear

mapping is an iterative search and it takes a few minutes time to give this particular the

mapping.

And if I see the computational complexity of the self organizing map it is slightly less

than the Sammon’s non-linear mapping or very close to Sammon’s non-linear mapping.

But quality wise if you see; so this particular Sammon’s non-linear mapping and this self

organizing map is going to give slightly better data points in lower dimension in terms of

the visualization.

That means, in terms of visualization; we can declare that this is the best in terms of

computational  complexity  this  is  the  first  test.  Now what  you do is  considering  the

computational complexity and the quality of the map data, we generally prefer the data



points mapped using the self organizing map out of these three; so, this could be the best

out of these 3.

Now, we will see how to use this particular information to develop the faster genetic

algorithm that is visualized interactive genetic algorithm.

Thank you.


