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Before we start the principle of a faster genetic algorithm namely Visualized Interactive

GA,  VIGA.  Let  us  explain  the  working  principle  of  some non-linear  mapping  tools

which we generally use to map the higher dimensional data to lower dimension for the

purpose of visualization. Now, visualization is required just to find out the information of

the surface of the objective function during optimization. If we want to find out the most

appropriate search direction, now by knowing the most appropriate search direction we

can accelerate the search of the GA just to make it faster.

Now, today I am just going to discuss in details the working principle of the some of the

very popular non-linear mapping tools.

(Refer Slide Time: 01:30)

Now, let me start with the first method that is Sammon’s non-linear mapping.
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Now, here actually what we do is we try to map the data from higher dimension to lower

dimension approximately and this is non-linear because from higher dimension to lower

dimension exact mapping that is one is to one in mapping is not possible.

Now, the Sammon’s non-linear mapping is a distance preserving technique. Now, let me

explain what do you mean by the distance preserving technique. Now, let us take the

example. Now, the tip of my finger supposing this is the first point and another tip of my

finger is the second point, now I want to determine the Euclidean distance between the

first point and the second point. Now, for the first point the coordinate can be represented

as follows for the first point it is x 1, y 1, z 1 in 3D space and for the second point the

coordinate is x 2, y 2, z 2. So, what you do is we try to find out the Euclidean distance

between these two points and the Euclidean distance between one and 2 is nothing, but

the square root of x 1 minus x 2 square plus y 1 minus y 2 square plus z 1 minus z 2

square. So, this is the way we try to find out the Euclidean distance.

Now, supposing that we have got the Euclidean distance values between the points 1 and

2. Now, once you have got this particular Euclidean distance we can keep it the same, but

I can move the second point with respect to the first point by keeping the same Euclidean

distance. For example, say the point one is fixed now point 2 I am moving keeping the

same Euclidean distance. Now, if this is the situation on changing the topology of the

second point with respect to the first point although I am keeping the same Euclidean



distance.  Now, here  in  this  particular  technique  what  we  do  is  we  try  to  keep  the

Euclidean distance between the 2 points constant, but we do not take care of its relative

position of the second point  with respect  to  the first  point  and that  is  why this  is  a

distance preserving technique not the topology preserving technique.

So, this particular technique is a distance preserving technique. Now, let us see how does

it work.
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Now, we try to find out the error in mapping while mapping the higher dimensional data

to the lower dimension; that means, supposing that I have got a large number data points

in higher dimension say one thousand data points. I will have to find out one thousand

corresponding  data  point  either  in  2D plane  or  in  3D space.  Now, while  doing this

particular mapping, I will have to do the mapping in such a way so that the error in

mapping becomes the minimum. Now, this is a minimization problem and to solve these

we use a gradient based method in Sammon’s non-linear mapping.

Now, supposing that I have got a problem involving capital N number of data points and

each data point is having capital L-dimensions. Now, this data points are to mapped to

the 2D plane. 
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Now, this  shows actually the schematic  view of this  problem which we are going to

tackle. So, here we can see that we have got N number of data points in L dimensional

space and this data points are represented by X i, where i is 1, 2 up to capital N and this

is nothing, but the representation of L dimensional space.

Now, here in this particular L D space if I want to represent a particular point. So, I will

have to use capital L number of numerical values. Now, this data points are to be mapped

to either 2D plane or 3D space. Now, here for simplicity let me consider that I am just

going to do the mapping onto a 2D plane. Now, it has got X and Y only 2 dimensions and

once again. So, I will have to get n data points here and each data point should have only

2 dimension.

Now, here n data points are represented by capital Y i, where i varies from 1, 2 up to n.

Now, let us see how to do this particular the mapping.
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Now, as I mentioned that in L dimensional space. So, a particular data point if I want to

represent.  So,  I  will  have to  use capital  L number of  numerical  values  for example,

capital X 1 is a collection of small x 11, small x 12 and so on and the last numerical

value is small x 1L. Similarly x 2 can be represented as x 21, small x 22, small x 2l and

the last one that is capital X n is represented as small x N1, small x N2 and the last term

is small x NL.

Now, this  is  how to  represent  capital  N number  of  data  points  in  L D space.  Now,

similarly in 2D plane, we can represent capital N number of data points as follows for

example, the first point is y 1 that is nothing, but y 11, y 12, similarly y 2 is small y 21,

small y 22 and the last point that is capital Y n is small y N1, small y N2.
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Now, let us see the steps. Now, the problem is we will have to do the mapping from

higher dimension to lower dimension. So, step one. So, the information of the higher

dimension is known to us of all the data points. Now, what we do is we are going to find

out the corresponding data point on the 2D plane.

So, what we do is we generate N data points in 2D plane at random using the random

number generator and what you do is we generally a considered a particular range for the

random numbers that is 0 to 1. Then step 2 we calculate the Euclidean distance values

between 2 points in higher dimension that is L D space. Say the points are X i and x j and

their Euclidean distance is nothing, but d ij star. So, d ij star is the Euclidean distance

between  the  2  data  points  capital  X i  and capital  X j  in  higher  dimension  and  this

particular information is known to us.

Now, what we do is we generate the data points say i and j in 2D using the random

number generator and what you do is we try to calculate the Euclidean distance between

the 2 points i and j in 2D plane and that is denoted by d ij. So, we have calculated the

Euclidean distance values between 2 points in higher dimension which is known and we

have also calculated the Euclidean distance between the 2 corresponding points i and j in

lower dimension. Now, for perfect mapping, this d ij star will equal to d ij, but as the data

points in 2D are generated at random. So, there is no guarantee that will be getting the

perfect mapping. So, there will be some error. Now, this error in mapping will have to



minimize using one optimization tool and generally we use actually a steepest descent

method.
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Now, I am just going to discuss how to use a steepest descent method to minimize. So,

this particular error, but before that let me explain how to calculate this particular the

mapping error.

Now, mapping error in mth iteration is nothing, but E m that is 1 by C summation i

equals to 1 to N, N is the total number of data points. Summation j equals to 1 to N

provided i is less than j. Now, d ij star minus d ij m. Now, this particular d ij star minus d

ij m it could be either positive or negative and that is why we put the square sign here

just to make it positive divided by d ij star that is the known Euclidean distance values in

the  higher  dimension.  So,  this  is  the  way actually  Sammon represented  the  error  in

mapping at mth iteration.

Now here, how to determine this particular C. Now, C is nothing, but a summation i

equals to 1 to capital N, summation j equals to 1 to capital N I less than j d ij star. Now,

to explain this let me take one numerical example. Now, supposing that I have got 5 data

points. Now, if I am got to 25 data points there Euclidean distance matrix can be written

as follows. Now, this is d 11, d 12, d 13, d 14, d 15, then d 21, d 22, d 23, d 24, d 25 then

comes d 31, d 32, 33, 34, 35 then comes d 41, 42, 43, 44, 45, then comes d 51, d 52, d

53, 54, 55. So, if there are 5 data points. So, we have got 5 multiplied by 5 25 distance



values. Now, out of these 25 distance values, this d 11, d 12, d 13, d 14 and d 55 their

numerical values are equal to 0. So, this particular diagonal of the matrix will contain all

0 values.

Now, if I concentrate on the right hand side of this particular diagonal. So, we have got 1

2 3 4 5 6 7 8 9 10. So, there are 10 distance values. Now, this particular 10 is nothing, but

5 C 2 and that is nothing, but 10. So, what I do is we consider the Euclidean distance

values on one side of this particular the diagonal and d 12 is equal to d 21 similarly d 13

is equals to d 31. So, we did not consider the both the sides of this particular the principle

diagonal.

Now that  means,  if  we  can  calculate  only  the  10  Euclidean  distance  values  so  my

purpose  will  sort,  the  same  thing  has  been  followed  here.  So,  C  is  nothing,  but

summation i equals to 1 to N, summation j equals to 1 to N with the condition i is less

than j. The moment I put i is less than j. So, I am just going to consider only one side of

this particular the diagonal principle diagonal of this matrix and we can find out what

should be the distance values the sum of this particular the distance values. The reason

we consider the sum of the distance values actually we try to find out the average; that

means, this particular thing is multiplied by 1 by C. So, we will be getting the expression

for this error in mapping at mth iteration.

Now, let us see with this how to proceed further.
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And here this d ij m, this particular d ij m is nothing, but the Euclidean distance between

the 2 data points i and j corresponding to mth iteration in lower dimension and that is

nothing, but square root summation K equals to 1 to d y i K m minus y j K m square of

that. So, this particular Euclidean distance d ij m that is in lower dimension and as I

mentioned d ij star the Euclidean distance between the 2 data points in higher dimension.

So, this is the way we express this particular error in mapping and what you do is in step

4 this mapping error is minimized using a steepest descent method because this particular

method  on  principal  cancel  the  minimization  problem  and  for  this  steepest  descent

method. So, this is the rule for updating.

(Refer Slide Time: 17:42)

Like y pq m plus 1 is nothing, but y pq m minus MF is the magic factor multiplied by

delta pq m. Now, here this magic factor is nothing, but the step length. If you remember

that in steepest descent method we use a steep a step length and the search direction. So,

here the step length is denoted by this magic factor MF and it varies between 0 and 1,

and this  particular  delta  pq m is  nothing,  but  the  search  direction  that  is  a  gradient

direction and we put one negative sign because we move in a direction opposite to the

gradient because this is a minimization problem.

Now, is delta pq m that is actually the search direction that is a gradient is nothing, but

the partial derivative of E m with respect to y pq m divided by we consider the norm of

the second order differentiation. And this particular norm will provide some numerical



value and ultimately this particular delta pq m is going to indicate the search the gradient

direction and the search will be opposite to the gradient. So, using this particular rule for

updating  this  steepest  descent  method  can  minimize  the  error  in  mapping  and  this

particular method is an iterative method initially there will be a large amount of error

because the data points in lower dimension are generated at random so we have got no

control on this particular data point and it is expected that initially there will be a large

amount  of  error  and  through  a  large  number  of  iteration.  So,  this  steepest  descent

algorithm is going to minimize so that particular the error in mapping.

Now, our experience says that if we run this particular algorithm say about 100 iteration

there is a possibility that will be getting very accurate error corresponding to that the

error in mapping will be very less.

Now, as I told that this is actually a mathematical approach and we can minimize this

particular the error in mapping. Now, I am just going to start with another algorithm

which is a grab base techniques and this particular technique is known as the VISOR

algorithm.

(Refer Slide Time: 21:02)

Now, here  actually  what  I  do  is  we  try  to  use  the  geometrical  information  of  this

particular  the  higher  dimensional  space  and the  data  are  initially  there in  the higher

dimension and we want to do the mapping to the lower dimension. And once again this is

a distance preserving tool not a topology preserving technique. The same problem we are



going to tackle like we have got capital N number of data points and this data points

actually we will have to do the mapping to the lower dimension; that means, from higher

dimension to lower dimension, so capital N number of data points, we will have to do the

mapping.

(Refer Slide Time: 21:41)

Now, how to do it, so I am just going to discuss in details. Now, supposing that we have

got  the  problem like  this  we have  got  capital  N number  of  data  points  in  a  higher

dimension that is L D space. Now, this is how to represent the L D space.

Now, we have got say capital N number of data points and as I mention to represent a

particular data points. So, I need capital L number of numerical values. Now, let us see

how to do this particular the mapping. Now, here I am just going to do the mapping from

L dimension to the 2 dimension; that means, I will have to find out capital N number of

data points on the 2D plane. Let us see how to do it.

Now, the steps I am just going to discuss first in details. Now, what will have to do is, I

have got capital N number of data points the first thing we do is we try to find out the

centroid of this particular capital N data points. Now, centroid is denoted by. So, this

particular M. How to find out the centroid? Now, for a particular data point we have got

capital L number of numerical values we concentrate on the first dimension. So, he will

be getting for N data points. So, N number of the numerical values corresponding to the

first dimension. So, we add all the capital N numerical values and then we divided by the



capital  N that  will  be the first  dimension information  for this  particular  the centroid

point. The same procedure we repeat for the second dimension, third dimension up to the

Lth dimension and we can find out the coordinate of this particular the centroid point that

is M.

Now, once we have got the centroid point. Now, what we do is we try to locate 3 pivot

points like V 1, V 2 and V 3. Now, I am just going to discuss how to locate this particular

the V pivot points. Now, this pivot points are actually going to help while doing this

particular the mapping. Now, to look at the pivot points say V 1 what I do is. So, starting

from the centroid we try to find out the Euclidean distance of all capital N data points.

So, there will be capital N number of numerical values for the Euclidean distance. We

compare those numerical values of the Euclidean distance and we try to find out a data

point  which is  for this  from this  particular  centroid point;  that  means,  the Euclidean

distance should be the maximum.

Supposing that V 1 is the data point whose Euclidean distance is maximum from M. So,

V 1 is selected as the first pivot point and once we have got this particular first pivot

point. Now, I have got remaining N minus 1 data points. So, what you do is we calculate

the Euclidean distance values starting from V 1 to all N minus 1 data points, so there will

be n minus one Euclidean distance values and one second we compare those n minus one

Euclidean distance values and we try to locate a point that is a second pivot vector for

which we get the maximum Euclidean distance values starting from V 1.

So, I will be getting this particular the V 2 and once I have got this particular V 2, now

we try to find out another pivot point. Now, this third pivot point should be should have

the maximum distance both from V 1 as well as V 2. So, what you do is out of capital N

data points 2 points we have already selected. Now, we have got remaining capital N

minus 2 data points. So, what you do is for this remaining capital N minus 2 data points,

so I calculate the Euclidean distance from V 1 and Euclidean distance from V 2 and we

try to locate a point out of this capital N minus 2 data points whose Euclidean distance

will be maximum both from V 1 as well as V 2 and we try to locate this particular the

third pivot point that is V 3.

Now, till now, whatever we have got is 3 pivot points V 1, V 2 and V 3 and once I have

got this particular the 3 pivot points. So, we try to locate the corresponding 3 pivot points



in 2 dimension. So, what you do is, we try to find out the Euclidean distance from the

origin of this higher dimension to V 1 Euclidean distance from origin to V 2 Euclidean

distance  from  the  origin  to  V  3.  So,  we  will  be  getting  3  numerical  values  and

considering those 3 numerical values as the radius. So, we draw the circular arc on the

2D plane.  Now, the first circular  arc could be approximately something like this, the

second one it could be something like this, the third one could be something like this. So,

we can find out 3 such the circular arcs.

Now, once I have got this particular 3 circular arcs. So, what you can do is I can also

calculate the Euclidean distance value between V 1 V 2 and that between V 2 and V 3.

So, on the first circular arc any point we select at random supposing that I am selecting

this particular point. Now, I know the Euclidean distance between V 1 and V 2 keeping

that. So, what I do is and considering P 1 as the center. So, we draw one circular arc on

the second this circular arc and I will be getting a data point here that is nothing, but P 2

and once I  have  got  this  particular  P 2.  Now, I  can find  out  the Euclidean distance

between V 2 and V 3.

So, we consider P 2 as center and the Euclidean distance between V 2 and V 3 as the

radius we draw one circular arc and you will be getting this particular point P 3. So,

corresponding to V 1, V 2 and V 3 in higher dimension I am getting P 1, P 2 and P 3

these 3 pivot vectors in lower dimension. Now, once we have got  this,  now how to

proceed.

So, what I do is in a higher dimension we join this point V 1 and V 2 by a straight line

like this similarly V 2 and V 3 a joint by another straight line something like this like

this. The same thing we do in lower dimension. So, we join the line between P 1 and P 2

like this and join the line between P 2 and P 3 like this. Now, what you do is say we want

to  do  the  mapping  for  a  particular  point  say  V  from  higher  dimension  to  lower

dimension;  that  means,  I  am  just  going  to  find  out  a  corresponding  point  in  2D

corresponding to this particular V in higher dimension a corresponding point in 2D. So,

what I do is from this particular V we draw the perpendicular on V 1 V 2. So, we draw

the perpendicular something like this. So, this is perpendicular.

Similarly, we draw the perpendicular on V 2 V 3 like this. So, this is perpendicular and

we try to locate the points like K 1 and K 2 and once I have got this particular K 1 I can



write down I can find out V 1 K 1 ratio K 1 V 2, K 1 V 2 and this we keep the same here

like P 1 D 1, P 1 D 1 ratio like your D 1 P 2 and following this particular relationship we

try to locate the point D 1 on P 1 P 2.

The same principle we follow here also. So, we have got this particular point K 2. Now,

we consider the ratio V 2 K 2 ratio this K 2 V 3 is nothing, but P 2 D 2, P 2 D 2 ratio D 2

P 3. Now, this corresponds. So, this particular this particular point d 2. Now, we will be

able to locate this particular point D 2 on the line P 2 P 3. Now, once we have got this

particular D 1 and D 2. So, what we do is we draw the perpendicular at the point D 1 to

the line P 1 P 2. So, I will be getting this type of perpendicular line. Similarly at the point

D 2 we draw another  perpendicular  to  the line  P 2 P 3 and will  be getting  another

perpendicular and these 2 perpendicular lines are going to intersect at a particular point P.

So, this P is actually nothing, but the point V in higher dimension.

So, this particular point V in L D space is map to the point P into 2D plane and the same

principle. So, we will have to follow for the remaining data points. Now, already we have

got say 1 2 3 4 data points in lower dimension. So, out of this capital N the 4 data points

we have already mapped to the lower dimension the remaining N minus 4 data points are

to be mapped following the principal the way I discuss how to map the point V to point

P. So, we follow this particular principal for the remaining data points so that all the

capital L data points in L dimensional space can be mapped to N data points on 2D plane.

So, this is the way actually we do the mapping approximately using the principle of this

particular the visor algorithm.

Now, this particular algorithm are the steps I have already written it here, but all such

steps are already discussed in details. So, whatever I discussed, all such things I have

written it here.
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Now, here we just put one note that this here the mapping is done in one iteration only

and this is very fast.  It  is in fact,  much faster compared to the Sammon’s non-linear

mapping. Now, what will be the quality of the map data points that we will be discussing

after sometime.

Thank you.


