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Lecture - 11
Constraint Handling

Now, I am going to start with the next topic that is topic 5, Constraints Handling in GA.

Now, GA actually used to solve the different types of optimization problems. Now, in

most of the real world problems actually we will have to handle some sort of constrained

optimization problem; that means, there will be some function of constraints as well as

objective function and the side constraints or the geometric constraints. Now, let us take

one example of a constrained optimization problem.
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Now, supposing that I have got a function y equals to f x and this I will have to optimize

say either maximize or minimize. Now, subject to some functional constraints like g i x

is less than equals to 0 or i varies from 1 to up to n. So, this is one functional constraint

and this is the inequality constraint.

Next is we have got h j x equals to 0, j varies from 1 2 up to p. Now, this is actually one

equality  constraint.  So, there are nothing but the functional  constraints,  these are the

functional constraints the functional constraint and here, this is the objective function the

objective  function  and  we  have  got  the  variable  bounds  that  x  is  lying  between  x



minimum and x maximum. So, this is nothing but the side constrained or the geometric

constrained side constrained or the geometric constrained and capital X is nothing, but is

a collection of all small x values like x 1 x 2 upto x m. So, this is actually the constrained

optimization problem.

Now, let me discuss how to tackle, how to handle this type of constrained optimization

problem.
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Now, here we have got small n number of inequality constraint and small p number of

equality constraint. So, the total number of constraint is n plus p that is equals to q and

the functional constraints, these are represented as phi k x k varies from 1 2 up to q. So,

this phi k x is nothing but the collection of all functional constraints.



(Refer Slide Time: 03:04)

Now, to handle this constraint optimization problem we take the help of an approach

which is called the penalty function approach. Now, let us see how to use this to tackle

this  type  of  constrained  optimization  problem.  Now,  supposing  that  I  have  got  1

objective  function  that  is  small  f  i  x  and  the  variable  are  such  that  the  functional

constraint or some of the functional constraint are going to be violated. So, if there is any

such violation of the functional constraint, so I will have to penalize so that particular the

solution by the penalty term that is nothing, but p i.

So,  I  am  just  going  to  concentrate  on  the  ith  solution  or  the  ith  GA  string  and

corresponding to the ith solution the fitness value is say f i x and the penalty is P i and

here I am putting, plus minus the reason I am going to tell you and the modified fitness is

nothing, but capital f i x is nothing but smaller f i x plus minus P i and P i indicates the

penalty. Now, this particular P i is having positive value and supposing that I am solving

1 maximization problem. Now, for solving the maximization problem, this penalty term

has to be subtracted on the other hand if I want to solve 1 minimization problem. So, I

will have to add this particular the penalty term.

Moreover if a particular functional constraint is not going to violative, not going to be

violated or if it satisfies a particular functional constraint for that the penalty term should

be equal to 0. So, if there is any violation of the functional constraint I will have to add

or subtract  the penalty depending on whether  it  is the maximization or minimization



problem and if there is no such violation of the functional constraint, we will have to put

this particular penalty term equal to 0.

Now, let us see how to calculate, this particular the penalty term. Now, here I am just

going to write down one expression to calculate the penalty that is P i that is the penalty

for the ith string, the ith solution is nothing but C multiplied by summation k equals to 1

to q phi i k x square. Now, here, this particular C is actually a constant and the numerical

value for this  constant  has to  be decided by the user and small  q indicates  the total

number of functional constraints and here the phi i k x, this phi i k x actually it indicates

how much is the violation of this particular the functional constraint.

So, what I do is we are going to find out the left hand side value and the right hand side

value for a particular functional constraint and by subtracting we try to find out how

much is this particular the violation.  Now, this particular phi i k x it could be either

positive or negative and that is why to make it positive we use this particular the square

term and sometimes we also use the mod value to get this particular positive value in

place of this particular the square term. Now, let us see how to calculate how to find out

this particular penalty value using different approaches. So, I am going to discuss a few

approaches like how to calculate this particular the P i value.
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Now, here actually what I do is we are going to use the concept of the static penalty first.

Now, here in static penalty what I do, we try to use this particular expression to find out



what  should  be  the  modified  fitness.  So,  corresponding  to  ith  solution  the  modified

fitness capital F i x is nothing, but small f i x plus summation k equals to 1 to q, C k r

that is the constant term multiplied by phi i k x square. 

Now, here  actually  the  C k  r  is  the  rth  level  violation  of  kth  constraint.  Now, this

particular numerical value will have to define will have to supply before we start with the

calculation of this particular the modified fitness that is capital F i x. Now, how to assign

this particular value that is C k r that I am going to discuss.

Now, to discuss this let me take one very practical example. Now, this particular example

is as follows. Now, supposing that I am going to design shaft for a particular fan say I am

considering 2 fans, one is the ceiling fan another is the that table fan sort of thing. Now,

supposing that the blades of this particular fan will be supported by a shaft. Now, I am

just going to design the shaft for the ceiling fan and I am also going to design the shaft

for the table fan.

Now, while designing this will have to consider one fact that if there is any failure in the

shaft of the ceiling fan there could be fatal accident the person we sitting below may die.

On the other hand if there is any failure on the shaft of this table fan there would be an

accident, but it may not be so much dangerous so the person who is sitting in front of the

fan may get hurt, but he or she may not die.

Now, if I want to design these 2 shafts for 2 different fans; I will have to consider 2

different  values  for this  particular  the C k r. Now, this  is  the way depending on the

practical situations or the requirement the user will have to select what should be the

suitable  value  for  this  particular  the  C k r;  that  means,  supposing that  I  have  got  2

functional constraints out of these 2 functional constraints we will have to find out which

one is more important whose violation cannot be tolerated so easily and if this is the

situation. 

So, if one is more important another is less important we can assign 2 different numerical

values for this particular C k r. So, once we have selected the numerical values for this

particular C k r. Now, very easily you can find out what should be this particular the

amount; that means, we can find out this particular the numerical value and I can also

calculate what should be this particular the modified fitness.



Now, after sometime I am just going to discuss one numerical example just show you

how to calculate this penalty term numerically.
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Now, then comes the concept of the dynamic penalty. Now, here actually what you do is.

So, this penalty term; that means, this particular term is going to vary with the number of

iterations. Now, let us see how does it work. So, capital F i x is the modified fitness that

is  nothing,  but  small  f  i  x  is  the  original  fitness  plus  C t  raise  to  the  power  alpha

multiplied by summation k equals to 1 to q mod value phi i k x raise to the power beta.

Now, here I consider the mod value just to consider the positive value for this particular

the deviation and this C is actually  a constant user defined constant alpha is another

constant beta is another constant and t indicates the number of iteration.

Now, here as t increases what will happen to this particular penalty term? The penalty

term is going to increase the numerical value of this penalty term is going to increase. It

means that at the beginning we put less amount of this penalty if there is a violation, but

with the number of iterations the amount of penalty which we are going to put that is

increased; that means, initially we may allow a few in feasible solutions, but with time

with  iteration  we  should  be  more  strict  and  will  have  to  put  more  penalty  for  the

infeasible solution so that in ultimately we should not get any in feasible solution in the

population of the GA.



Now, once again I will be solving a numerical example to show the importance of this

particular  the  penalty  calculation.  Now, here  I  have  put  one  note.  So,  this  dynamic

penalty is found to perform better than the static penalty as usual.
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Now, then comes the concept of this adaptive penalty. Now, here actually what I do is we

calculate the modified fitness capital F i x that is nothing, but small f i x plus summation

k equals to 1 to q. Then comes lambda k t multiplied by phi i k x square. So, this is

nothing, but the amount of violation square of that and this lambda k t we will have to

define, using this conditions. Now, let us say how to define this particular lambda k t. So,

t is nothing but the number of iterations.

So, lambda t plus 1 that; that means, the value of lambda in the iteration is nothing, but 1

divided by beta 1 multiplied by lambda t for feasible solution; that means, if there is no

violation of the functional constraint, so this is the expression which I will have to use

and if there is a violation; that means,  for infeasible solution.  So, I will have to use

lambda t plus 1 is nothing, but beta 2 multiplied by lambda t, where this beta 1 beta 2,

where this beta 1 beta 2 are greater than 1 and beta 1 is not equals to beta 2.

Now, here I just want to mention one thing according to this adaptive penalty supposing

that  a particular  functional  constraint  is  going to be violated,  now for this  particular

infeasible solution we put high penalty value and even if for feasible solution when there

is no such violation of the functional constraint we put a small penalty value instead of



putting 2 equal to 0. So, in place of feasible solution, actually instead of putting penalty

equals  to  0  we  put  some  small  value.  So,  this  matter  is  slightly  different  from the

dynamic penalty approach and static penalty approach.

Now, I am just going to concentrate on a numerical example just to explain the method

of this particular the penalty function approach.

(Refer Slide Time: 16:17)

Now, I am just going to consider a constrained optimization problem of 2 variables x 1

and x 2. Now, the objective function is  as follows minimize f  of x 1 comma x 2 is

nothing, but x 1 plus x 2 minus 2 x 1 square minus x 2 square plus x 1 x 2. So, this is the

objective function subject to x 1 plus x 2 less than 9.5 and x 1 square plus x 2 square

minus x 1 x 2 is greater than 15.0 and x 1 x 2 align between 0 and 5. So, this is the

objective function, these 2 are the functional constraint and this is nothing but the side

constraint or the variable bounds.

Now, let us see how to calculate the penalty terms using the concept of static penalty

approach, then comes dynamic penalty approach and adaptive penalty approach.
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Now, let me consider one set of values of the variables like x 1 equals to 2.0 and x 2

equals to 3.0. Now, what I do is in static penalty, here actually we have got 2 functional

constraint, q is equals to 2 and the static penalty which is denoted by p s is nothing but

summation k equals to 1 to q C k phi k x square.

(Refer Slide Time: 18:10)

Now, let  me  assume  that  C  1  equals  to  C  2  equals  to  10  here  the  first  functional

constraint  is  not  violated.  Now, let  us  check  the  first  functional  constraint,  the  first

functional  constraint  that  is  nothing,  but  x 1 plus x 2 is  less than 9.5.  So,  here if  I



calculate the value for this particular left hand side corresponding the first functional

constraint that is left hand side is nothing but x 1 plus x 2 that is 2 plus 3, 5 and the right

hand side that is your 9.5 and 9.5 is greater than 5.0. So, there is no violation of this

particular the functional constraint. 

(Refer Slide Time: 19:18)

And as I mentioned that if there is no such violation of the functional constraint so we

put the penalty term equals to 0.
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But for the second functional constraint there is a violation just to check that once again

let me concentrate on the second, your this functional constraint. There is a left hand side

that is the left hand side for the fun second functional constraint is nothing but x 1 square

that is 4 plus x 2 square that is 9 minus 6, so this is nothing, but 13 minus 6 that is 7 and

the right hand side is equal to 15 and 7 cannot be greater than 15. So, it is going to

violate  the  second  constraint,  second  functional  constraint.  Now,  for  this  particular

violation actually what will have to do is, so we will have to find out how much will be

the penalty value.
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Now, penalty value for this particular the second functional constraint is something like

this here we can find out the deviation that is 7 minus 15 is the deviation because left

hand side was 7 right hand side was 15 so deviation is minus 8. So, I can find out the

amount of static penalty that is equals to 0 for the first functional constraint because there

is no violation there and for the second functional constraint this is 10 multiplied by

minus 8 square and we will be getting 640. Now this is actually the amount of the static

penalty. So, this is the way actually will have to calculate how much will be the penalty

value using the concept of the static penalty approach.
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Now, I am going to discuss the concept of the dynamic penalty. The dynamic penalty is

calculated as follows like P D is nothing, but C multiplied by t raised to the power alpha

summation k equals to 1 to 2 mod value phi k x raise to the power beta. Now, let me

assume that t equals to 1 that is the next generation, alpha equals to 2, beta equals to 3.

Now, using this actually we can find out what should be the penalty term for the second

functional constraint. And for the first functional constraint there is no violation so the

penalty term will become equal to 0.
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So, we take C equals to 10 and now I am just going to put the numerical values for all

these symbols. Now, if I put the numerical value like C is equals to 10 I am putting and t

equals to 1, alpha is equals to 2, beta is equals to 3 and the amount of violation also I

know that is minus 8. So, if I put all such numerical values, I will be able to find out

what should be the value for this dynamic penalty and which is coming to be equal to

51200. So, this is the amount of the dynamic penalty.

(Refer Slide Time: 22:54)

Now,  let  us  see  how  to  calculate  the  adoptive  penalty  for  the  same  constrained

optimization problem. Now, we take beta 1 equals to 2, beta 2 equals to 3 and let we

consider that lambda t is equals to 10 and using this particular expression. So, we will

have to calculate this amount of adaptive penalty that is P a is nothing but summation k

equals to 1 to 2 lambda k t multiplied by phi k x square.

Now, here as I told that if there is violation definitely I will have to find out the penalty

term,  but  whenever  there is  no such violation  then also I  will  have to  calculate  this

particular the penalty term. And according to this particular formula like lambda t plus 1

is nothing, but 1 by beta 1 into lambda t for the first functional constraint because here

there is no violation of the constraint and I will have to use for the second functional

constraint, this particular expression that is beta 2 multiplied by lambda t because here

there is a violation of functional constraint. 



Now, if I put the numerical values for the first functional constraint, I will be getting half

multiplied by 10. Now, from where I am getting half, beta 1 equals to 2, so 1 divided by

2 multiplied by 10 and here for the second functional constraint, this is 3 multiplied by

10, so 30.
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Now, using this I can find out what should be the penalty term, but before that I will have

to find out the amount of violation. Now, if I just compare the left hand side and the right

hand  side,  for  the  first  functional  constraint  although  there  is  no  violation  of  the

functional constraint the difference between the left hand side and the right hand side is

found to be minus 4.5 and for the second functional constraint the difference between the

left hand side and the right hand side is minus 8.0. 

Now, using this concept of adaptive penalty I can find out that is 5 that is this lambda

multiplied by minus 4.5 square plus thirty is this particular lambda into minus 8 square

and if you calculate, for the first functional constraint, I will be getting the penalty term

something like this and for the second functional constraint I will be getting this is the

penalty term.

Now, if I compare these 2 penalty term. So, for the functional constraint where there is

violation the amount a penalty will be higher compared to the other where there is no

violation. Now, if I just add them up I will be getting the amount of total penalty like

this. So, this is the way actually will have to calculate the penalty term.



Now, once I have got this particular the penalty term. So, I will have to calculate the

modified fitness and based on the modified fitness. Now, I will have to carry out the

reproduction scheme or the selection scheme in genetic algorithm. So, that depending on

the modified fitness the reproduction scheme selects good solutions for the mating pool.

We have discussed the working principle of a binary coded GA and now, I am just going

to concentrate on the merits and demerits of genetic algorithm. Now, one good advantage

of this particular genetic algorithm is it is a robust optimization tool it can solve a variety

of optimization problems.

(Refer Slide Time: 27:18)

Now, here the chance of the GA solution for being trapped into the local minima is less

because  this  is  the  population  based  approach.  We start  with  a  number  of  solution

selected  at  random and  moreover  actually  what  I  do  here  we  use  the  operator  like

mutation which also help us just to come out of the local minima problem. So, here in

GA there is a chance that will be getting the globally optimal solution.

Now, genetic algorithm can handle the integer programming problems and mixed integer

programming problems; that means, when the variables could be of integer and real and

sometimes we will find that there could be a good combination of the real and integer

variables. Now, for handling that type of optimization problem, GA is found to be very

efficient.  Now, for the discontinuous objective function GA can perform optimization

because GA does not require the gradient information of the objective function. And as I



have already mentioned that we face difficulty with the traditional tools for optimization

for their parallel implementation.

Now, as GA starts with a population of solution there is a possibility we can implement

genetic algorithm in the parallel platform the whole population is divided into say either

3 or say more than 3 groups and those are assigned 2 3 or more than 3 CPUs and there

will be competition and there will be the message passing instruction codes running there

and it helps just to do the interaction between the 2 pieces or among, more than 2 pieces

just to collect the information. 

And  consequently  the  effective  competition  time  to  solve  a  complex  optimization

problem will  be reduced and GA has got the advantage here we can do this  parallel

implementation very easily because this is a population based search and optimization

tool. And as I told that this is very robust GA is very robust and it can solve a variety of

problems.
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However,  this  particular  GA has  got  a  few  demerits.  Now,  GA is  computationally

expensive and consequently there will be slow convergence rate. Now, here we are going

to face one problem supposing that we want to carry out some sort optimization online,

but this GA is going to take a long time to give that particular optimal solution. So, there

is  a  problem we  cannot  implement  or  we  cannot  use  this  particular  GA for  online

optimization and GA is actually a black box optimization.



Now, let us try to recapitulate the way we run GA to solve a particular problem. So, once

I have got a problem once the mathematical formulation of the problem is with us. We

know what is the objective function,  what are the functional  constraint,  what are the

variable  bounds and accordingly what I  do is  in the code of GA we write down the

expression of the objective function we set the range for the variables and we select the

GA parameters like what should be the population size, what should be the probability of

crossover,  what  should  be  the  probability  of  mutation  and  so  on.  And  once  I  have

selected the GA parameters now we allow the GA to run, the GA will run for a large

number of iteration and ultimately you will be getting that particular optimal solution.

And truly speaking we do not know what is happening inside the GA, but if I wait for a

few minutes  or  few hours  ultimately  you  will  be  getting  that  optimal  solution;  that

means, GA works like a black box, the user actually does not know what is happening

inside the GA. But here I just want to put one comment. Nowadays actually we generally

do not consider GA as a black box optimization. Now, I will be discussing in details after

sometime and I will show you that we can also investigate what is happening inside the

GA during this particular optimization that I will be discussing after sometime.

Now, here actually in GA there is no mathematical convergence proof and that is why

many people actually do not believe GA, but there are some indirect proof like the proof

using the schema theorem which I have already discussed or with the help of some hand

calculation  I  have  shown that  GA can  improve the  solution  and it  can  find  out  the

optimal  solution.  So,  these  are  all  indirect  proof  that  GA can  find  out  the  optimal

solution, but till now unfortunately there is no concrete mathematical convergence proof

for this particular the genetic algorithm.

And another thing I just want to put which is very important the user should know the

grammar of GA and unless he or she knows the grammar. So, he or she will not be able

to set the GA parameters properly and if the parameters are not set properly there is no

guarantee  the GA will  be able  to hit  the globally optimal  solution.  So,  these are  all

disadvantages or the demerits of the genetic algorithm.

Now, actually comes the concept of efficient optimization tool. Now, supposing that we

have got a very complex real world optimization problem and we will have to solve that.

Now, to solve that if I take the help of a genetic algorithm genetic algorithm is a very



powerful tool for global optimization, but its local search capability is not so good. So, if

I use GA to solve that particular problem. 

So, it will carry out a huge search, but it may take long time to hit the globally optimal

solution. So, what I do is we first use GA to carry out the global search and we try to find

out a region that is  the region of interest  where there could be a possibility  that  the

globally optimal solution is going to lie. So, what I do is we take the help of another very

good local search technique for example, say steepest descent method.

Now, once I have got some good region with the help of a GA we try to carry out further

search with the help of a steepest descent method which is a very efficient local search

method. So, to solve this complex optimization problem actually we consider both the

things together say one tool for global search that is genetic algorithm. 

And another tool for efficient local search that is the steepest descent algorithm that is

the gradient based algorithm and combining these 2 algorithm we can develop a more

efficient optimization tool and we have seen to solve a variety of difficult real world

optimization problem. So, we will have to go for this type of efficient optimization tool.

Thank you.


