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Which is a very important fluid property in the context of our discussions and we will try 

our best to understand it first qualitatively, and try to see that how we can 

mathematically express the fluid flow behavior in terms of the fluid property viscosity. 

We start with recalling the no slip boundary condition that we were discussing in the 

previous lecture. So, what was the consequence of the discussion that we concluded that 

in many occasions, the paradigm of no slip that is 0 relative velocity between the fluid 

and the solid at the points of contact of course that means, the tangential velocity 

component that particular situation gives rise to a boundary condition at the fluid solid 

interface known as no slip boundary condition. 

We will try to see, what is the consequence of the no slip boundary condition? So, when 

we see the consequence, we have by this time understood that if the solid boundary 

stationary then a fluid which is coming from a far stream with a uniform velocity say u 

infinity and encountering the solid boundary what it will first do it will first have a 

disturbance, the disturbance is been imposed by the solid boundary. So, if we want to 



 

 

make a sketch of how the velocity varies with height at any section say at this identified 

section at the wall, if the no slip boundary condition is valid then since the plate is 

stationary, the fluid is also stationary. So, the fluid velocity is 0. 

Next you consider a layer of fluid which is just above this one, this layer is subjected to 2 

effects - one is the effect of what is there at the top of it, and what is there at the bottom 

of it. At the bottom, there is a plate and there is a stagnant layer of fluid molecules 

adjacent to the plate and this stagnant layer does not want the upper layer to move fast. 

On the other hand, the fluid which is above that layer is not feeling that effect of the wall 

directly, so that is trying to make the fluid move faster. Therefore, it is being subjected to 

a competition where the bottom layer is trying to make it move slower, the upper layers 

are trying to make it move faster, and it has to adjust to this. 

So, where from this adjustments comes, if the bottom layer was not there then perhaps it 

would have not understood or felt the effect of the wall. Because what we are intuitively 

expecting is that there is some property of the fluid by virtue of which this message that 

there is a wall gets propagated from the bottom layer to the upper layers. And there must 

be some messenger for that and qualitatively that messenger is through the fluid property 

known as viscosity. So, viscosity is a kind of messenger for momentum disturbance. So, 

this is the disturbance in the momentum of the fluid. So, there must be some mechanism 

that place within that fluid by which a momentum disturbance is propagated, and 

because of this momentum disturbance what happens because of this momentum 

disturbance, there is a resistance in relative motion between various fluid layers. So, 

viscosity is also responsible for creating a resistance between relative motion against 

relative motion between different fluid layers. 

So, let us see that how the relative motion takes place. So, first you have at the wall 0 

velocity then as you go up you have a velocity higher than this one. It is not same as u 

infinity, but it is definitely greater than 0, because it does not feel the effect of the wall 

directly. If the fluid has no viscosity perhaps it would have never failed the effect of the 

wall, but now because the fluid has viscosity the effect of momentum disturbance is 

being propagated from the bottom layer to the top that is how this layer feels it not 

directly, but implicitly. And accordingly it slows itself down, but as you go too higher 

and higher positions, you see that the velocity is becoming greater and greater and 



 

 

eventually it will come to a stage when it reaches almost the u infinity, the free stream 

condition. 

So, one of the important understanding is that if you draw the locus of all this velocity 

vectors, you can make a sketch which will represent how the velocity is varying over the 

section, which is taken along this red line. And this type of sketch we will encounter 

many times we in our course known as velocity profile. So, it is giving a profile of 

variation of how the velocity varies over a section. This velocity profile comes to a state 

where beyond which you really do not have any significant variation in the velocity that 

is it has almost reach reached u infinity. 

What does it mean? It means that say beyond this if you go this has reached 99 percent 

of u infinity. So, beyond this if you go, it will be only little change or for all practical 

purposes no change that means, beyond this the fluid does not directly feel the effect of 

the wall. It does not feel the effect of the wall at all that does not mean that the fluid does 

not have viscosity it has viscosity, but the momentum disturbance could propagate only 

up to this much. So, we can see that we may demarked the physical behavior one is 

below this threshold location, and another above this one, below this the fluid adjust 

itself with the momentum disturbance above this it does not feel the momentum 

disturbance. 

Let us consider a second cross section. So, let us say that we go to this cross section 

another one, a cross section like this. So, when we want to plot a velocity profile at a 

wall because of the no slip boundary condition, it is 0 fine. Now, let us say that we are 

interested about plotting the velocity at the same location at this one. So, now, you tell 

me whether it will be more or less then what was here, what should be the common sense 

intuition? 

Student: less. 

Professor: Less, why do you feel that it should be less? 

Student: (Refer Time: 07:52) 

Professor: So, it is like now more and more fluid is being in under direct effect of the 

plate, so there is the greater tendency that the fluid is being slowed down more and more. 



 

 

When the fluid first entered only a few fluid elements were subjected to the effect of the 

plate, now that more and more fluid has been subjected to effect of the plate, the effect of 

slowing down is stronger. So, you expect that here the velocity will be maybe somewhat 

less than what it was here. In this way, in all sections it will be like this what it will 

imply is that it will take a greater height here to reach the almost the u infinity because of 

a greater slowing down effect. So, it may reach u infinity say at a height here, it is not 

exactly u infinity, but say 99 percent of u infinity. And we are happy with that because 

for all practical engineering purposes that is as good as u infinity for us. So, again we 

may have a velocity profile here whatever. 

And then we can make a very interesting sketch. What type of sketch, see at every 

section we are having a demarcation between a position below which viscous effects are 

strongly important and beyond which these effects are not so important. So, accordingly 

we may draw a demarcating line between this 2. So, when you consider this particular 

section, you say that this is the location up to which viscous effects are strongly creating 

gradients in the velocity so to say so here up to this much and so on. 

So, if you join this with an imaginary line this is not that such a line in the fluid, but it is 

just a conceptual demarcating boundary between a region close to the wall where viscous 

effects are very important. And this region is thinner as this velocity is higher. We will 

see that later on that if this velocity is very small, this region actually propagates almost 

towards infinity, but if this velocity is quite high, of course there are other parameters 

involved we will see what those are. But qualitatively if this velocity is very high this 

region is thin and this region is changing, it is not of a fixed dimension. So, this 

imaginary line demarcates between outer region where viscous effects are not important 

so to say and an inner region where the viscous effects are important. And the inner 

region where these viscous effects are important that region is known as a boundary 

layer. 

So, we will be discussing about the details about the boundary layer through a separate 

chapter later on, but we are just trying to develop a qualitative feel of what is the 

boundary layer, because it has a strong consequence with the concept of viscosity. And 

the other thing is that this is the clever way of looking into the problem. If you want to 

analyze the problem where of course, the fluid is having some viscosity then outside the 

boundary layer, you may not have to care for the viscosity. So, it is almost like a fluid 



 

 

without viscosity as it is behaving because the momentum is not further getting 

transmitted to create a change in the velocity. 

So, if you have a viscous flow analysis within this region that may be good enough 

coupled with a ideal flow analysis or fluid flow analysis without viscosity outside this 

region, so that is why conceptual this boundary layer is a very important concept. Not 

only that most of the interesting physics in the flow takes place within this layer and 

therefore, it is very important to characterize this particular behavior. So, we have 

loosely seen the no slip boundary condition and its consequence, before we more 

formally look in to the viscosity, let us look into one or 2 animated situations, where we 

try to understand the implication of the no slip boundary condition. 

(Refer Slide Time: 12:36) 

 

So, let us look into that. So, this is a going to be a representation through a colored dye 

that; what is the visual representation of a no slip boundary condition? So, if you look in 

to it carefully, you see that if you focus your attention on the region which is there at the 

interface between the fluid and the solid, the entire dye was concentrated on that may be 

let me play that again, so that you can see it again. So, carefully see what happens on the 

surface, you see that there the fluid almost tries to adhere to the surface; and at the end 

that will be cleaned off at the end of the movie. Just to show that there it was the fluid 

was almost like a stagnant one because of the no slip boundary condition. 
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So, to have a different and may be a more artificial point of view let us look in to this. 

So, at the wall because of the no slip boundary condition you have the so called particles 

or molecules sticking, but as you go outside you see that as you go further and further 

you see that there is a velocity profile that is being developed there are velocity gradients 

which are being developed. So, this is a very important concept. 

(Refer Slide Time: 14:23) 

 

And when we discuss about this concept in a greater details may be before that, let us see 

another one where you have 2 cases see qualitatively we are trying to understand what is 



 

 

the effect of viscosity. So, the upper panel represents the case with low viscosity and the 

lower panel case represents a case with high viscosity. So, if you see the case with low 

viscosity, you can find out a very important demarcation between the upper and the 

lower case. Visibly, what is the demarcation? 

Student: (Refer Time: 14:54). 

So, the boundary layer for this so called low viscosity case is very thin whereas, for high 

viscosity case it is thicker; that means, what the high viscosity case is trying to do it is 

trying to propagate the disturbance of momentum imposed by the plate to a greater 

distance. So, effect of viscosity is in terms of also to the extend, by which the effect in 

disturbance of momentum is propagated into a medium. Of course, we will go in to the 

mathematical quantification of this, but my first intention is that we first develop a 

qualitative feel of or the physical feel of what we are going to discuss about. 

Now, whenever we are going to discuss on this concepts, obviously we will not always 

be having a molecular picture. And as you recall in a continuum hypothesis that if you 

consider molecules maybe just like an isolated particle, a fluid is a collection of such 

isolated particles. And whenever we are going to discuss about the behavior of the fluid 

in terms of its viscous nature here, we will be mostly bothering on the continuum nature. 

(Refer Slide Time: 16:19) 

 



 

 

So, let us look in to a sequence of animated pictures to see that how you can have a 

transition from a particle nature to a flow nature. So, this is the behavior with one 

particle, there may be 2 particles isolated. So, these particles are like balls. So, these are 

idealizations do not think that this are like real fluid particles, these are just to develop 

certain concepts. So, you see that you can have more number of particles isolated 

particles. 

(Refer Slide Time: 16:49) 

 

Then let us look in to the next sequence of images. So, now you are dropping those 

particles through this funnel, this group behavior is enforced by. Now, let us see the next 

in this sequence. So, if you see a third example, we look into a fourth example straight 

away, some problem with playing this. So, we will continue, but if you just look into the 

small part of the small version of the figure, you can appreciate that if you have more 

and more number of particles very densely populated together, you will see that it is 

almost like as if there is a continuous flow that is coming out of the funnel. 
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So, depending on the compactness and the nature of the particles, you may start with the 

particle nature and at the end you may come up with the fluid flow nature, so that is the 

whole hallmark of a continuum that in a continuum. 

(Refer Slide Time: 17:41) 

 

We are basically looking for a continuous distribution of matter, and we will first try to 

analyze the viscosity behavior through that continuum understanding. So, let us say that 

we take a fluid element. So, we take a fluid element at a particular location and that 

particular location maybe say close to the wall within the boundary layer. So, let us say 



 

 

that we are taking this fluid element, which was originally rectangular. Now, let us say 

that what happens to the nature of the fluid element or its geometrical characteristics, if it 

is subjected to viscous effect. 

So, what will happen? To understand it, let us zoom its picture. Originally, let us say that 

name of this fluid element is A, B, C, D. The layer A B has the tendency say to move 

with the velocity u. Let us assume that the velocities are all along the positive x 

direction. And therefore, since this moves it to velocity u, if we consider a small time 

interval of delta t, a will move to a position say a prime with velocity of u, so that the 

displacement is u into delta t. Now, the upper layer says it is moving with a velocity of u 

plus delta u. 

Now, we can understand that why it should be different because we have qualitatively 

discussed that there is some effect which propagates the disturbance in momentum 

through the fluid. And therefore, these 2 layers are expected to be of different velocities. 

And let us say that the fluid element that we have taken is quite a thin one with a 

thickness of delta y. So, now, let us see that where does D go, D will definitely go to a 

location D prime which is what which is somewhat advance than what was the location a 

prime. So, these you can say is like u plus delta u into delta t. 

So, if you now consider that what is the relative displacement of D in comparison to A? 

Why that is important, that is important because if you now try to sketch the new 

location of A D, which is like this. You will realize that it has not only got displaced 

linearly, but it has undergone an angular deformation which is the so called shear 

deformation. How is this shear deformation quantified, it is quantified by this angle say 

delta theta. If the time interval is small then obviously, this is expected to be small fluids 

under shear are continuously deforming. 

So, here we understand that this kind of deformation is possible if the fluid is under 

shear. So, when the fluid is under shear and it is continuously deforming, you allow more 

and more time this angle will be more and more. So, we restrict to a small time interval, 

when this was very small and this can be quantified as tan of delta theta is equal to what 

this net displacement here is delta u into delta t divided by delta y. For small delta theta 

tan of delta theta is roughly like delta theta and then you divide that by delta t right side 

you have delta u by delta y, and you take the limit as delta y tends to 0 as well as delta t 



 

 

tends to 0. So, this is nothing but d u d y, if there are other components of velocity we are 

assuming that it is having only a component of velocity along x that is not the reality, but 

to introduce the concept, we have started with such a simple understanding. 

So, if it is having only one component of velocity then this is the case; otherwise it could 

be represented by some partial derivatives. We will come across the more detail 

understanding of the deformation of the fluid elements, when we talking about the 

kinematics of fluid flow in a separate chapter. But just for introductory understanding, 

this in the right hand side is a sort of gradient of the velocity which comes from the 

velocity profile and that is representing what this is like theta dot. So, it is representing 

the state of angular strength of the fluid, so a rate of angular deformation so to say. So, 

when we say rate of deformation of a fluid, it might be linear deformation or angular 

deformation. If you do not detail it with a further qualification, we implicitly most of the 

times mean that we are talking about angular deformation. So, this is rate of angular 

deformation of the fluid. 

Now, who is responsible for this rate of angular deformation, a shear stress. So, there is a 

shear stress and the shear stress is very much related to the disturbance of momentum 

that was imposed because of the presence of the plate. So, shear stress may also be 

interpreted as the momentum flux. We will see that how it may be interpreted with a 

different example, but important thing to understand is that this theta dot must be related 

to the shear stress. So, this is the kind of straining. So, this is rate of shear strength or rate 

of angular deformation. So, these are the terminologies which are commonly use to 

quantify this one or 2 exemplify this one. So, we call this rate of deformation or rate of 

angular deformation or rate of shear strength. 

In fluids strength itself is not important because as we have seen if we allow time it will 

be straining more and more. So; obviously, if you want to quantify strength, it becomes a 

kind of a redundant exercise you allow more time under shear it will be straining more 

and more because fluid is continuously deforming under shear. What is most important 

for a fluid is like the rate at which it is shearing; and for that this quantification is very, 

very important. What is responsible for that again is the shear stress. So, there must be 

some relationship between the shear stress and the rate of deformation. 



 

 

Why such a relationship is to be present, because one is like a cause and another is like 

an effect. And it is the behavior of the material of the fluid that will decide that how it 

will respond to a situation and have an effect of deformation and that type of behavior in 

general continuum mechanics is known as constitutive behavior or constitutive 

relationship that means, the fluid has the constitution. So, in a particular disturbance, in a 

particular situation, it responds to that and the manner in which it responds, it comes 

from its own constituting behavior it comes from the material property. So, therefore, 

some relationship, which should relate the rate of deformation with the shear stress. 

And in a general functional form we can write that the shear stress should be a function 

of the rate of deformation of course, when we are writing a shear stress here. What 

should be the correct subscripts if we want to write it in terms of tau i j to represent it say 

if this is x-axis and this is y-axis may be one 2 or 2 one because tau 1 2 and tau 2 1are the 

same. Or even you can write tau x y or 1 2 or 2 1 whatever, but here will just omit the 

subscript because here we are looking for only one particular component of the stress 

tensor, other components are not relevant for this. So, we will just call it tau just to be 

simple enough in the notation. 

Now, this function or relationship may be linear, non-linear whatever, try to draw an 

analogy with the mechanics of the solids that you have learnt. So, you have learnt that in 

most of the solids, which have elastic properties, you have stress related to strain, and 

that behavior may be linear non-linear whatever. But if you have a elastic material then 

within the proportional limit you have stress is proportional to strain and that 

proportionality is being connected with an equality through a material property known as 

modulus of elasticity. Of course, all materials are not linear elastic materials, but this 

particular law, which is the Hook’s law, is very popular one because many of the 

engineering materials will obey that behavior within proportional limits; and many times 

in engineering, we are working within those limits. 

Similarly, for fluids, very interestingly most of the engineering fluids that we encounter 

and typically the 2 common engineering fluids we always encounter are air and water, 

and these fluids will also obey that type of linear relationship between the shear stress 

and the rate of deformation. So, for those fluids which obey the linear relationship 

between the shear stress and the rate of deformation we call those as Newtonian fluids. 



 

 

So, Newtonian fluids are those fluids for which the shear stress is linearly proportional to 

the rate of angular deformation or shear deformation or shear strength. 

(Refer Slide Time: 29:03) 

 

So, for Newtonian fluids you have tau is proportional to theta dot. This proportionality 

again should be breezed up with the equality through a material property here the 

material is the fluid, so that is expressed by an equality through a fluid property mu 

which is called the viscosity of the fluid. So, this is the formal definition of the viscosity 

of a fluid. Of course, if it is a Newtonian fluid then only this definition works. So, for a 

fluid which is not a Newtonian one, then this definition does not work, still one may cast 

the relationship in this type of pseudo form, but that is not real viscosity that is called as 

apparent viscosity. Because a real in a true sense the viscosity definition should be 

following the Newton’s law of viscosity, but all fluids do not obey the Newton’s law 

viscosity. The fluids, which do not obey the Newton’s law viscosity, are known as non-

Newtonians fluid. 

It is a entire branch of science which deals with how the material should respond in 

terms of it shear deformation behavior and linear relationship is just only a small part of 

that. The entire science is known as theology where you are basically dealing with the 

constitutive behavior of say fluids against various forcing mechanisms, but here we will 

confine our scope mostly to Newtonian fluids, and we will briefly touch upon one or 2 

examples of non-Newtonian fluid just to appreciate that there may be interesting 



 

 

deviations from the Newtonian behavior. To do that first, we will concentrate on this 

fluid property viscosity, and we will try to formally find out its unit dimensions and so 

on. 


