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Lecture – 59 

Principle of Similarity and Dynamical Analysis-Part-I 

 

In this lecture, we will discuss on the topic of principles of similarity and dimensional 

analysis. Let us first get of background on motivation of starting this topic. Let us say 

that we are trying to have an idea of the how to design an aircraft and we know that if 

you want to design an aircraft, you want to have a clear idea of the lift and drag forces as 

some of the fundamental entities to design it for the real system. At the same time, we 

know that it is somewhat prohibitive to have many many experiments on aircrafts of real 

sizes. So, if you have aircraft of real size and if you want to test it, it is not only very 

expensive, but also there are many other drawbacks associated with such experiments 

So, one might be interested to have a reduced model that is a model of aircraft of maybe 

a reduced size and then tested in a wind tunnel. So, in a wind tunnel say keep the aircraft 

model and have a control flow of air relative velocity between the aircraft and the air and 

then from that if you measure the pressure distribution, you may also measure other 

parameter say velocity distribution and so on and you will get a clear picture of, what is 

the flow around the aircraft? The question is can you extrapolate these to the behaviour 

of the real aircraft that is a very big question? So, the first question that you would like to 

answer is that given a study on the basis of a model of a different size how or whether 

you can extrapolate the results of those experiments to predict what is going to happen in 

reality in the real situation. 

So, in the real situation whatever is the entity that is being used that is considered to be a 

prototype and the model is a version of a prototype, a scaled version of the prototype, in 

this example the model is smaller than the prototype it is obvious because if you have a 

real aircraft that is quite large you want to reduce its size. It is not always true that 

models have to be smaller than the prototype, sometimes the prototype itself may be in 

conveniently small and you might want have a model a bit larger than that. Question will 

be that whether that scaling will affect your results or not that is one of the important 

thing that you want to answer and if the scaling does not affect your prediction then the 



next question comes that how can utilize the results from the experiments with a model 

to predict what is going to be for the prototype that is a first question. 

The second question is let us say that you are doing experiments with a model you may 

have many parameters which are influencing the results of your analysis or the results of 

your experiment. Now how could you reduce the number of parameters to a fewer, but 

more effective ones, may be more effective non dimensional parameters? Why non 

dimensional parameters are important because sometimes you may parameterize the 

result as a sole function of certain non dimensional parameters. So, as an example, if you 

have say flow through a pipe, you can have many experiments with different links, 

different diameters or may be different densities of fluid different viscosities of fluid. 

But if you parameter is the result in terms of Reynolds number then if you keep the 

combinations of these such that the Reynolds number is unaltered the physical behaviour 

is unaltered; that means, we in some in such a case may reduce the parameters from say 

4 parameters to an equivalent single non dimensional parameter. So, the big exercise or 

the big understanding is; how can we make the parameterization of the experiments in 

terms of the reduced number of parameters using certain non dimensional parameters? 

So, these are the important question that we would like to answer through the study of 

principles of similarity and dimensional analysis. 

Now, when we say similarity, what kind of similarity we look for? The most intuitive 

form of term of similarity that appeals to us is a geometric similarity. So, whenever we 

first studied about similarity in high school, we only studied about geometric similarity. 

So, if you have a figure and another figure which is geometrically similar you have 

basically ratios of the equivalent size as identical or equivalent lengths as identical. So, 

basically then you have a similarity in the length scales that is what we essentially found 

for geometric similarity. 

So, geometry similarity is something which is intuitive that is if you want to study the 

flow fast and aircraft you may get small, but geometrically you would always like to 

make it similar in terms of the actual big aircraft. 



(Refer Slide Time: 05:56) 

  

So, when we talk about similarity and the nature of similarity the first similarity that 

would come to our mind is geometric similarity and geometric similarity is the similarity 

in the geometry as obvious as that there is nothing more involved. The next type of 

similarity that we look for is known as kinematics similarity. So, kinematics similarity 

again from the name it is clear it is similarity of motion. So, may be what it is means is 

that if you have say 2 points; P 1 and P 2 and say the velocity here say u 1 and the 

velocity here is u 2, in a model in a in a prototype model like this where the equivalent 

point for P 1 is P 1 prime equivalent point for P 2 is P 2 prime. 

Then and say the velocities are u 1 prime and u 2 prime then u 1 by u 2 will be identical 

to u 1 prime by u 2 prime. So, you will be basically having a sort of similar scale as the 

velocity now if you do not want to consider the velocity as such, but just have a more 

qualitative picture more qualitative picture, but a more physical picture may be obtained 

from the concept of the stream lines. So, if you have kinematics similarity; similarity in 

motion means the streamline which are there should also be geometrically similar 

because similarity of streamlines is an indicator of the similarities in the kinematics 

because streamlines relate to a visualisation of the kinematics of the motion or the 

velocity vector. 

Now, remember that when you have streamlines the contour of a body is also a 

streamline as we have discussed because at through the contour of the body you do not 



have any penetrating flow. So, it is also a streamline; that means, that if you want to have 

similarities in streamlines, you must also have similarities in the contours of the bodies; 

that means, for kinematics similarity, geometric similarity is a must so; that means, 

whenever we say that there is a kinematic similarity that is prevailing implicitly we must 

understand that they are also geometrically similar additional restriction not be imposed 

kinematic similarity automatically ensures that just because the body of the surface or the 

contour of the body is itself a stream line. 

The third important concept regard to the similarity is a dynamic similarity. Dynamic 

similarity is the similarity in forces; that means, if there are 2 types of dominating forces 

which have certain ratio in the model, the same ratio should be preserved in the 

prototype. 
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That means let us say that you have inertia force and viscous force. So, if you have these 

2 as the important forces and competing forces then you must have the ratio of the 

inertial force and viscous force in a model same as the ratio of the inertia force by 

viscous force in the prototype or equivalently in this case; that means, Reynolds number 

in the model same as the Reynolds number in the prototype. 

So, again it may be inferred that dynamic similarity should imply kinematics similarity 

because if you do not have kinematics then how can you have a dynamic similarity if 



you just think about inertia forces so; obviously, it follows the dynamic similarity should 

have kinematic similarity and kinematic similarity in terms should have geometric 

similarity therefore, it is as good as considering just the aspect of dynamic similarity it 

will aromatically ensure kinematic and geometric similarity. It is very easy to talk about 

these in theory, but when you go to experiments it may be difficult to achieve these types 

of similarities as we are theoretical intending, we will look into certain examples to 

illustrate that. 

But before that we have to discuss about one important thing which we did not explicitly 

mention when we talked about these similarities. So, this discussion may give an 

indication that if you somehow have geometric kinematic and an obvious dynamic 

similarity; that means, then you have essentially all types of similarities between the 

model and prototype. So, whatever experiment you do in the model you can extrapolate 

that to the behaviour of the prototype that innocence true, but incomplete because the 

first and foremost requirement of a similarity is that the physics of the problem was 

identical for model and prototype. 

So, let us say let us take an example, say you have a pipe of diameter 10 meter, now 

somebody says that I will have an experiment where I will have a geometry, similar 

thing with a diameter of 10 micron. So, it is just as if a geometric similar thing let us say 

by some way the Reynolds numbers are maintained to be the same. So, velocities are 

adjusted in such a way that the Reynolds numbers are the same. So, dynamitic dynamic 

similarities preserve and from the dynamic similarity it is possible to get a picture of the 

behaviour in these 2 cases. So, if one does not experiment with these may be one is 

intending to extrapolate it for this case. 

It will be totally wrong because the physics of the problem has got changed it has got 

changed in many ways one of the most common way without looking into anything else 

is as you reduce the size surface tension effects become more and more important. So, 

capillary effects will have a strong role to play in terms of dictating the dynamical 

behaviour in this system where for such a large pipes the capillary effects will not be that 

important. So, physics of the problem has changed all together whatever, but the 

important physical aspects which were not important for which were not important for 

the largest diameter pipe for the much smaller size capillary it has become important. 



So, no matter whether you maintain a Reynold number to be the same you will come up 

with the wrong conclusion because in the small scale the Reynolds number is not maybe 

the dictating factor because inertia force is not important. So, instead of going through 

the ratios of these certain forces or the non dimensional numbers, you have to first be 

ascertain whether this non dimensional number is physically relevant for the physics 

which is occurring over that scale or not. So, that is very very important. So, you should 

not change from a scale to another scale for predicting the relative between model and 

prototype in such a way that the physics of the problem changes all together and that is 

one of the very important tasks for an experimental designer that one should not design 

an experiment which changes the physics all together from what happens for the 

prototype. 

Now, when you have and these forces the ratio of these forces let us just look into certain 

examples where we considered the ratios of different forces and those will give certain 

non dimensional numbers Reynolds number is one which we have already learnt and 

referred to many time. 

(Refer Slide Time: 14:16) 

 

Let us look into some other ones let us say that we want to find out a non dimensional 

number. So, some examples of non dimensional numbers these non dimensional numbers 

are important because in terms of these you may reduce the number of parameters with 

respect to which you parameterized the result of your experiments. 



So, let us say that we considered the ratio of the pressure force by inertia force as an 

example. So, pressure force we will try to see, what are the scales just in the same way as 

we did when we came up with an expression for the Reynolds number. So, pressure force 

will be some pressure difference times and area this times L square inertia force inertia 

forces is for the mass that is rho into a L cube into acceleration. 

So, acceleration is like u D u D x. So, u square by L. So, the ratio of these 2 becomes 

delta p by rho u square, sometime this is known as Euler number. Let us say we want to 

find out the ratio of inertial force by surface tension force. So, inertia force, we have 

already seen surface tension force if sigma is the surface tension force coefficient sigma 

into L. So, this becomes rho u square L by sigma, this is known as Weber number. Let us 

say we want to find out inertia force by gravity force. So, inertia force by gravity force 

will be rho L cube u square by L divided by gravity force is m g. So, rho L cube g so that 

is u square by g L. So, this is the non dimensional number classically the square root of 

this one is considered to be one of the important non dimensional numbers called as 

Froude numbers that is just u by square root of g L then some more examples let us go 

through. 
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Let us say we consider inertia force by elastic force. So, rho L cube u square by L by 

elastic force if you have modulus of elasticity as E then E into area. 



Student: (Refer Time: 18:40). 

E into L square so that is equal to what? U square divided by E by rho. What is E by rho 

I mean what physical thing does it represent? It represents square root of E by rho 

represents what? 

Student: (Refer Time: 19:06). 

The sonic velocity through the medium so that is a; that means, this is nothing, but u 

square by a square where a is the sonic velocity or sonic speed through the medium and 

we know that sometimes the square root of this one which is the mach number which is a 

very commonly used mach number is the square root of this one that is u by a in another 

example let us say viscous force by surface tension force. So, viscous force viscous force 

is what if you just want to write it for a Newtonian fluid mu into the velocity gradient is 

the shear stress. So, mu u by L times L square shear stress in the area and surface tension 

forces sigma into L. So, that is mu by sigma sometimes known capillary number. 

So, in this way many such non dimensional numbers are possible. In fact, hundreds of 

hundreds non dimensional numbers are there depending on the ratios of different forces, 

but we have just introduced some of the more common once which are which may be 

pertinent to an introductory level course now when we talk about similarity we have to 

understand one thing that whether these similarity is going to be maintained for all cases 

and; that means, that can you predict the real behaviour. So, 2 questions we want to 

answer can you predict the real behaviour without satisfying the similarity in certain 

cases the inverse that is if we do not satisfy the similarity then what would be the 

consequence or is it possible that in all cases we satisfy the true similarity and these type 

of interrelated questions would try to answers through some example or problems let us 

is look into that. 
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Let us say that we have one wind tunnel experiment wind tunnel for dark force 

determination the scale is 1 4th scale and it is a test on an automobile with the length of 

the model as one meter density of the model and the density of the prototype they are. 

So, this is when we say density of the model and prototype these are not density of the 

solids actually these are densities of the fluid flowing around. So, in loose sense we right 

the density of model and prototype does not mean the car density of the car it is basically 

the density of the fluid that when are talking about the air then similarly the viscosities of 

the air conditions 2 into 10 to the power minus 5 Pascal second and the velocity of the 

prototype is 25 meter per second. 

The first part of the problem is calculate the velocity of the model second part is the drag 

force on the model is measured to be 600 Newton, calculate the drag force on the 

prototype then the third part that experiments indicate that the range in which we are 

operating the drag coefficient is independent of Reynold number and it is equal to C D 

for the model is 0.5 with a reference area as 0.19 meter square. Calculate the drag force 

on the prototype and then from that you find that why it is different from what is 

predicted in part b and the 4th part you find out what is the power required to overcome 

the drag force in a prototype. These are the parts of the question.  

To look into it one by one, so the physical scenario just try to get a picture of this that 

you have you want to design a car and you want to have the car design for speed of 25 



meter per second and then for that you are having model experiment where you are 

having the size of the model car 1, 4th of that of the prototype one and the wind 

conditions etc at the same the land scale of the model is 1 meter. 
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So, what is the velocity of the models? So, here inertia forces and viscous forces are 

important because this is a live Reynolds somebody strongly dictating it. So, for the 

dynamic similarity you must have Reynolds number of the model same as Reynolds 

number of the prototype so; that means, you have rho model mu model or we are calling 

V. So, we model l model by mu model is equal to rho prototype V prototype l prototype 

by mu prototype. So, the densities are the same, the viscosities are the same. So, v m is 

equal to v p into l p by l m. What is l p by l m? 4, so this is 4 into 25 that is 100 meter per 

second. 

Next the drag force on the prototype, see what is the important coefficient that what is 

the important relationship that should dictate the equivalence of the drag force, it is a 

drag coefficient should be same as in the model and prototype. So, you must have C D of 

the model same as C D of the prototype. So, you have the C D is what the drag force 

divided by half rho v square into the area that is l square is equal to F D of the prototype 

by half rho p v p square into l p square. So, you have F D of the prototype, what is the 

drag force on the prototype that is a drag force on the model into v p by v m square into l 

p by l m square densities get cancelled out. So, what is v p by v m? That is one-fourth. 



So, 1 by 16 and l p by l m is 4. So, it will be what? What would be the drag force on the 

prototype? 

Student: (Refer Time: 28:01). 

So, these 2 get cancelled out. So, this is the drag force on the model, which is 600 

Newton then let us considers the third part experiments indicate that for the range of 

Reynolds number in which one is operating for this case is independent of Reynolds 

number that we have seen that we have discussed about the physical situation under 

which is like that. So, then C D of the model is 0.5 area of the area of reference for that 

corresponding C Ds 0.19 meter square. So, you can calculate that what is the 

corresponding drag force on the model and corresponding drag force on the prototypes if 

you calculate that let me just tell that what you get? 
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So, the drag force on the prototype that you get as of course, C D of the prototype into 

half rho V prototype square into area of the prototype and you have the test on the area 

of the model. So, you can write this as area of the model into what? 

Student: (Refer Time: 29:25). 

16 l area of the prototype by area of the model is l prototype square by l model square. 

So, it will be area of the model into l p by l n square. Velocity of the prototype you are 



already given, the drag force of the prototype is same as drag force of the sorry; the drag 

coefficient of the prototype is same as drag coefficient of the model and that is obtain 

experimentally as 0.5. So, from these if you calculate the drag force on the prototype this 

comes out 520.5 Newton. 

Now, interesting is not what is the exact calculation, but why these 2 predictions are 

different. So, the drag force prediction from part b is 600 Newton from this one, it is 

522.5 Newton, this is experimentally obtained. So, this has more authenticity because the 

drag coefficient for model and prototype same that you have used this velocity is known 

and this is just from the model area with a scale ratio. Now why you feel that this may be 

different see the key is just try to use a common understanding that C D is independent 

of Reynolds number; that means, you may have C D of the model equal to C D of the 

prototype without satisfying Reynolds number of the model same as Reynolds number of 

prototype. 

So, when you are assuring this and when you have in the range C D Independence of 

Reynolds number maybe you could have achieved it with the 34 Reynolds number, but 

still your prediction goes well because C D becomes independent of this is a case without 

satisfying the so called dynamical similarity you are able to come up with a prediction by 

exploiting the physical behaviour over that that origin that C D is independent of 

Reynolds number. So, these are critical tit bits of similarity not always like you blindly 

look into the similarity, but also looked in the context in which it is being applied then 

the 4th part of course, that is very very obvious power required to overcome what is the 

power required to overcome the drag force. It is the drag force times the velocity so that 

is 13062.5 watt that is the answer. 


