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So, we will consider a second example of exact solution of the navier stokes equation 

through something which is very important in fluid mechanics. This is called as Couette 

flow. Consider 2 parallel plates with relative motion that means. 
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Let us say that the bottom plate is stationary and the top plate is moving toward the right 

with a velocity u 1. The gap between the plates is small and the flow is fully developed. 

Now you may ask the question that why are we studying this. Have you ever seen 

somebody pulling plate on the top of another plate? I mean I have never seen this kind of 

a situation. 

So, if you now try to guess that still even though you have more practical situation of a 

pressure driven flow which is the Hagen poiseuille or plane poiseuille flow, the flow 

between 2 parallel plates is plane poiseuille flow that we have just studied, then why you 

are studying this Couette flow. I will come to the answer in a moment and this answer is 

very important. See very often we teach our student something without motivation. We 



give an example well we consider 2 parallel plates one plate is moving another plate is 

stationary, but students are not able to find out any relevance. 

So, it is important that students should try to get a feel of why this kind of flow is 

important. Let us try to find out the velocity profile for this, so as usual for fully 

developed. So, we consider steady flow incompressible flow 2 dimensional flow. Now 

for fully developed flow, let us fix up our x and y axis also that will help in solving the 

problem, for fully developed flow you have v equal to 0 and x momentum equation, 0 is 

equal to minus d p d x plus mu d 2 u d y 2. So, d 2 u d y 2, is 1 by mu d p d x. Let us call 

this as section 1 let us call this as section 2. 

Example, when p 1 is equal to p 2. So, d p d x, if this is the length of the channel is equal 

to p 2 minus p 1 by l, this is equal to 0. This is called as pure Couette flow; that means, 

there is no pressure gradient which is acting on it. Couette flow can also have a pressure 

gradient acting on it, but if there is no pressure gradient acting on it, it is called as pure 

Couette flow. So, far pure Couette flow, you have this is equal to 0; that means, d u d y is 

equal to a constant c 1; that means, u is equal to c 1 y plus c 2. What are the boundary 

conditions? At y is equal to 0, u equal to 0, this is the first boundary condition. And 

second boundary condition at y equal to h u is equal to u 1. 

So, at applying the first boundary condition at y equal to 0 u equal to 0; that means, c 2 is 

equal to 0. And second boundary condition at y equal to h, u equal to u 1. So, c 1 is u 1 

by h; that means, the velocity profile is u is equal to u 1 into y by h. So, velocity profile 

is linear, if the velocity profile is linear what is the rate of strain or rate of shear, the rate 

of strain or the rate of shear is what is d u d y. So, what is d u d y? D u d y is u 1 by h. 

So, by specifying the value of u 1, you can impose a particular value of shear. So, this is 

known as shear driven flow. 

Just like you have pressure driven flow, this type of flow is also important and this is 

known as shear driven flow. So, the Couette flow is a typical example of something 

which is called a shear driven flow. Now what do you get such an example. Let us say 

that in industry we commonly get shafts, which transmit power. Now there is an outer 

casing within which the shaft is supported and that is called as bearing. So, this is the 

outline of the bearing. Now to avoid metal to metal contact between or material to 



material contact, in general between the shaft and the bearing there is a lubricating oil 

that is kept in the gap. 

So, this lubricating oil is a thin layer, it is a very narrow gap. And then the shaft is 

rotating with a particular angular velocity whereas, the bearing the is stationary. If the 

gap between the shaft and the bearing is very small, this curvature effect can be 

neglected then these 2 can be thought of approximately has 2 parallel plates and one 

plate relative moving relative to the other. So, the fluid dynamics in bearings, if you want 

to understand that then the Couette flow can be one of the very basic mechanisms which 

helps us to understand this. There is also another motivation. And that motivation is very 

settle. 

So, if you recall that what is the velocity profile in a pressure driven flow. So, if you 

consider the previous example, what was the velocity profile? It is a parabolic velocity 

profile. Now small part of a parabola is like a straight line. Let us say there is a 

biological cell which is sitting on the wall of this channel and we are interested to study 

the force exerted by the fluid on the cell. Then very close to the wall since we are 

considering only a small part of the parabola we can linearize it and we can consider a 

linear velocity profile that is acting on the cell depending on the dimension of the 

channel. Of course, if the channel itself is of the comparable dimension as that of the 

cell; then no question of this considering this small linear part. 

But let us say the channel is 1 meter and the cell is 10 microns. So, for practical purposes 

this 10 micron velocity variation; velocity variation within this 10 micron is 

approximately giving a linear velocity profile. So, a linear velocity profile or a share 

driven flow is very practical. It is not always the question of one plate pulled over the 

other, that the philosophical perspective of creating a relative motion between the 2 

plates that you have to consider. 

So, the velocity profile if we draw, now this is u 1 and this is h now. So, far, So, good, 

but what happens when both pressure gradient and driving share acts on the system that 

plates are moving and p 1 minus p 2 is non 0. Let us work out a problem highlighting 

such a case. 
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So, example 2, please open page number 7 of your lecture notes and you will find 

example 2. Consider steady incompressible fully developed flow of water at 20 degrees 

centigrade between 2 horizontal parallel plates with the gap between the plates is 2 

centimeters. A constant pressure gradient d p d x is equal to minus 900 Pascal per meter 

drives the flow. 

In addition, the upper plate moves with a uniform speed whereas, the lower plate is 

stationary. Find the velocity of the upper plate what should be u 1. So, that number 1, Q 

is 0 and number 2, tau all at y equal to h is equal to 0. The viscosity of water at 20 

degrees centigrade is 10 to the power minus 3 Pascal second that is given. So, this is y 

and this is x. So, let us work out this problem. So, in this problem, you have both driving 

pressure gradient as well as shear. Now for steady 2 dimensional fully developed in 

compressible flow all those assumptions being valid. Let us write the governing 

equation, so solution. 

What is the governing equation? 0 is equal to minus d p d x. So, this now we integrate. 

So, d 2 u d y 2 is equal to 1 by mu d p d x. And we know that d p d x is a constant. So, 

now, if we integrate it d u d y is equal to 1 by mu d p d x into y plus c 1. And u is equal 

to 1 by mu d p d x y square by 2 plus c 1 y plus c 2. How do you get c 1 and c 2? We use 

the 2 boundary conditions boundary condition 1 at y is equal to 0 u is equal to 0. This is 



the no slip boundary condition. So, you have c 2 equal to 0, boundary condition 2 at y 

equal to h u equal to u 1. 

So, you have u 1 is equal to 1 by mu d p d x, h square by 2 plus c 1 h; that means, c 1 is 

equal to u 1, by h plus 1 sorry minus this is minus 1 by mu d p d x into h by 2. So, u is 

equal to 1 by mu d p d x, 1 by 2 mu d p d x, into y square then c 1 y minus y h plus u 1 y 

by h. So, you can clearly see that this satisfies the boundary condition at y equal to 0 u is 

0 and at y equal to h also u is 0. So, this is the velocity profile and the very interesting 

thing you can observe, in this velocity profile, you have one part which is purely because 

of the pressure gradient. And another part this is purely because of the shear. And the 

result end is just the algebraic some of this 2. 

Why it is so? It is so because this equation is a linear equation. So, if u equal to some u 

pressure driven in the solution and u equal to u shear driven in the solution. Then u equal 

to u pressure driven plus u shear driven is also a solution of this equation. Now what is 

ask from ask is not u, but what is q, or if Q is 0 then what is u 1, u 1 is not given. So, late 

us calculate what is q. So, Q is equal to the what is Q integral u d y this is Q per unit with 

from y equal to 0 to y equal to h. 
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So, 1 by 2 mu d p d x, plus u 1 y by h d y from 0 to h; this is Q by width. So, Q by width 

is equal to 1 by 2 mu, d p d x, to h cube by 3 minus h square by 2, sorry, h cube by 2 



right plus u 1 by h into h square by 2. So, now, this is minus this is 3 into 2 is 6 into 2 is 

12. So, 1 by 12 mu d p d x into h q, plus u 1 h by 2 and this is equal to 0. 

So, what is u 1? U 1 is minus. So, sorry plus 1 by 6 mu d p d x into h square. 1 by 6 mu d 

p d x into h square. So, if you put the values of this then this, will come out to be minus 

60 meter per second. The second part of the problem is what should be u, so that tau all 

equal to 0. Before that how is it possible that you are having a pressure gradient, but still 

the flow rate is 0. See physically what is happening in this problem is, that there is a 

driving pressure gradient which is minus 900 Pascal meter. So, that is trying to drive the 

flow in the positive direction. 

If u 1 also drives the flow in the same direction that there will be a net flow, but in this 

physical problem we are seen that u 1 is coming out to be minus 60 meter per second; 

that means, u 1 is in the opposite direction. So, there is a flow rate that is being attempted 

to be created by the pressure gradient in the forward direction, and the shear in the 

negative direction. And some total is coming out to be 0 for this u is equal to minus 60 

meter per second. 

Now, wall shear stress. Wall shear stress as we have discussed is mu d u d y and our 

condition was given that at y equal to h this will be 0. So, what should be u 1 such that at 

y equal to h tau all is 0. So, mu d u d y, tau all at y is equal to h is mu d u d y at y is equal 

to h. So, u is given. So, what is d u d y at y equal to h? 1 by 2 mu d p d x into 2 y minus 

h, plus u 1 by h, at y is equal to h. So, 1 by 2 mu, d p d x into h, plus u 1 by h, this is 

equal to 0. So, u 1 is equal to minus h square by 2 mu d p d x. 

The y this is 0, because it is given that the wall shear stress at y equal to h is 0. So, this is 

this u 1 is 180 meter per second. Now we have worked out few problems. The next case 

that we will consider is the special case which is called as thin film flow. Thin film flow 

under fully developed condition. 



(Refer Slide Time: 24:00) 

 

Let us say, that there is an inclined plate and the plate is incline at an angle theta with the 

horizontal, whereas, the gravity is acting vertically downward fashion. We set up the x 

and y axis such that x axis is along the inclined plane, and y axis is perpendicular to that. 

And there is a thin liquid film with a flat interface. If it is a curved interface it is a 

significantly more complicated problem that we will not take up in this particular lecture. 

So, this is a flat interface. There is a liquid and there is air and this film thickness h is 

much less than the length l of the incline. So, now, let us write for that for fully 

developed state, the for fully developed flow v is equal to 0, x momentum equation. So, 

this is the consequence of continuity, x momentum equation left hand side is 0, minus d 

p d x plus mu d 2 u d y 2, and there will be an additional body force which is, if this is g 

along the incline it is g sin theta and here it is g cos theta. So, plus rho g sin theta; 

fundamentally there is a problem with this equation. And we need to consider the y 

momentum. 

First of all, p here is a function of both x and y all right, but if the variation if the height h 

of the domain is much less than l, then the pressure variation within this thin film is 

much less than the pressure variation along it. And therefore, in that case p is not a 

function of y. Otherwise if this film is a thick film then p can be a significant function of 

y. So, p is not a function of y p is a function of x only and u is a function of y only. So, 



you can write d p d x is equal to mu d 2 u d y 2 minus rho g sin theta. So, this d p d x, 

this is the function of x only. And this is the function of y only. This is the constant. 

So, it can be absorbed in either function of x or function of y. So, this is plus right. Now 

function of x is equal to a function of y, if h is equal to a constant. So, we can say that 

implies each is equal to constant. So, if you say that it is a constant, and then we give this 

2 sections name as this 2 and this is 1, then this d p d x is nothing, but p 2 minus p 1 by l. 

Now here both p 1 and p 2 are p atmosphere. This means d p d x is equal to 0. 

So, here the film is falling totally by the effect of gravity. So, you have mu d 2 u d y 2, I 

am writing in the in a new page. 
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This means d 2 u d y 2 is equal to 1 by mu minus 1 by mu, rho g sin theta. So, if you 

integrated twice, then d u d y is equal to minus 1 by mu rho g sin theta y, plus c 1 and u 

is equal to minus 1 by mu rho g sin theta y square by 2 plus c 1 y plus c 2. Now what are 

the boundary conditions. Let us come to this figure once again. Let us write the boundary 

conditions here. 

First boundary condition is pretty clear. At y is equal to 0 u is equal to 0. This is no slip. 

Then at y is equal to h, what is the boundary condition? See at y equal to h, there should 

be a continuity in shear stress. So, you can write that mu liquid d u d y at the liquid is 

equal to mu of air into d u d y air. Now because mu air is much less then mu liquid, we 



can say that d u d y in the liquid side which is our domain is roughly equal to 0. So, very 

often students use this boundary condition without understanding where from it comes. It 

comes from nothing, but the continuity of shear stress across the boundary across the flat 

interface. 

So, when the viscosity of here is much less than the viscosity of liquid then that boils 

down to the d u d y in the liquid must be very small or approximately 0. So, if that with 

the case let us note down the boundary conditions here again. Boundary conditions 

number 1, at y is equal to 0 u is equal to 0; that means, c 2 is equal to 0. Number 2, at y 

equal to h d u d y equal to 0; that means, 0 is equal to minus rho g h sin theta by mu plus 

c 1. So, c 1 is equal to rho g h sin theta by mu. 

So, u is equal to minus rho g sin theta by mu, into y square by 2 minus y h. This is the 

velocity profile. So, you can clearly see that the velocity is driven by this rho g sin theta. 

That is the gravity effect. This is typical gravity driven flow. We will consider another 

example where now, So, for we have considered the use of Cartesian coordinate system, 

but another example where cylindrical coordinate system is important. And that is an 

example which refers to one of the very important applications in engineering that is pipe 

flow. 
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So, we will consider study laminar incompressible fully developed flow through circular 

pipe. This is called as Hagen poiseuille flow. So, I will just talk about the only settle 



changes from the rectangular to the Cartesian system. See for the pipe the convenient 

coordinate system is the r theta z. 

This is z this is r and u have the theta, but because of the theta symmetry or the azimuthal 

symmetry instead of x y system it is z r system. So, u will be replaced with v z, and y and 

v will be replaced with v r. So, for fully developed flow you have v r is equal to 0. And 

the z momentum equation left hand side will be 0 for fully developed flow, right hand 

side this is the only change. Because of the cylindrical coordinate system, the d 2 u d y 2, 

will become 1 by r d d r, of mu r, d v z b r. 

So, this is the only change in the form of the derivative because of change of coordinate 

system from Cartesian to cylindrical, plus minus d p d z that will remain as it is. So, for 

mu equal to constant, 1 by mu sorry 1 by r, d d r of r, d v z d r is equal to 1 by mu d p d 

z. So, this is the function of r only. This is the function of z only. This implies that each 

is equal to constant, equal to c say. So, 1 by r, d d r, of r d v z d r, is equal to c. So, if you 

integrate it r, d v z d r, is equal to c r square by 2 plus c 1. 
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Now, you can amply the boundary condition, that at the central line v z is maximum, that 

is at small r equal to 0, d v z d r equal to 0; that means, c 1 equal to 0. So; that means, 

you have d v z d r is equal to c r by 2. So, if you integrate it, then v z is equal to c r 

square by 4, plus c 2. Now let us assume here that small r is equal to capital R is the 



radius of the pipe. This is the central line. So, the second boundary condition at small r is 

equal to capital R v z is equal to 0; that means, c 2 is equal to minus c r square by 4. 

So, you have v z is equal to c by 4, into small r square minus capital R square. Now what 

is the average velocity v average? This is integral of v z into a elemental area 2 pi r d r, 

by pi r square. This is the total volumetric flow rate elemental area. So, this this is the 

circular section. If you consider at a radial location r, at thin street of width d r, then this 

d a is 2 pi r d r. So, let us integrate this, v z into 2 pi r d r. So, v z is c by 4 into r square 

minus r square into 2 pi r d r, by pi r square 0 to r. 

So, v average is this pi pi gets cancelled. So, c by 2 r square then integral of r cube d r is 

r 4 by 4, minus integral of r d r is r square by 2. So, that becomes r 4 by 2. So, this 

becomes or does it become it becomes minus c R square by 8 right. So, if you substitute 

this value of c here, then v z by v average is equal to 2 into 1 minus small r square by 

capital R square. This is the fully developed flow through circular pipe the velocity 

profile. You can see that it is very similar to the parallel plate channel case, only thing 

that it is expressed in terms of a different coordinate system. Now for practical 

engineering consideration what is more important for ask as we have discussed is not just 

the velocity profile, but what is the pressure drop. 
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So, the pressure drop c. So, you can write from this this slide, that this c is equal to minus 

8 b average by r square, and c is nothing, but 1 by mu d p d z. So, this you can write delta 



p by delta z is equal to 8 minus 8 mu v average by r square. If we write this delta p, now 

can you tell that this d p d z will it be positive or negative for a positive v average, for a 

positive v average d p because viscosity is positive and here you have negative sin. So, 

positive v average will mean that you have negative d p d z. So, let us call that negative d 

p d z as minus dealt p by delta z. 

So, delta p and let us say this data z is l the length of the pipe or the length over which 

you are measuring the delta p, is 8 mu v average l by r square. Now you can write delta p 

in terms of length unit by calling h f rho g. So, why do we call delta p as a h f rho g, see 

this delta p why are you requiring a pumping power? In the pipe you would have 

required no pumping power, had they are been no viscous resistance, but here you are 

trying to apply a pressure gradient through a pumping power; so that you can maintain 

the flow even in the presence of viscous resistance. 

So, delta p you can write h f rho g, where h f is an head loss due to friction. Head is 

energy per unit weight in hydraulics head is known as head is equivalent to energy per 

unit weight. So, h f is equal to 8 mu v bar l by rho g r square. And v is nothing, but Q by 

pi r square. So, h f is equal to 8 mu Q by pi r square into r square is r to the power 4 by 

rho g l. And r is nothing, but often in engineering you know instead of rad diameter 

instead of radius we expressed it in terms of diameter r is equal to d by 2. So, h f is equal 

to 128 mu Q l by rho g pi d to the power 4. 

This is known as Hagen poiseuillies equation. So, you require you see that the head loss 

is inversely proportional to the 4th power of the hydraulic diameter or the diameter of the 

pipe, is proportional to Q proportional to l. So, all this thing are linearly proportional mu 

Q l, but d is inversely related to 4th power of d. So, if you make d smaller and smaller 

and smaller h f will be larger and larger and larger. So, to maintain the same Q, you 

require huge pumping power to drive the flow through a very narrow channel and that is 

one of the great challenges in driving flow of fluids through micro channels and Nano 

channels, which is itself a very interesting topic. 
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Now, we have introduced one friction factor c f, I will introduce another friction factor f 

which is called as Darcy friction factor, h f is defined as f l by d v average square by 2 g. 

This f is called as Darcy friction factor this is just a non-dimensional pressure drop the 

fanning friction factor is a non-dimensional walls shear stress, because in a fully 

developed flow the shear force is balanced by the pressure force. So, this a fan c f are 

related with each other, but let us find out f. So, h f is 8 mu v average I am just writing 

one of the equations in their previous slide, by rho g r square and v average is Q by pi r 

square. 

So, 8 mu Q l by pi rho g r square; living this a part we are not going to use this. So, this h 

f is f l by d v average square by 2 g. So, f is equal to 8 mu v average l by rho g r square, 

into in place of d we will write 2 r into 2 g by l v average square. So, now, you can see 

that g gets canceled, one v gets canceled, l gets canceled, and one r also gets canceled. 

So, f is equal to 8 into 2 into 2 that is 32 and r becomes d by 2. So, 32 into 2, 64 by rho v 

average d by mu. So, f is 64 by Reynolds number. So, for fully developed flow through 

for study laminar incompressible fully developed flow through a circular pipe, the 

friction factor versus Reynolds number is given by f equal to 64 by Reynolds number. 


