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Lecture – 32 

Bernoulli’s equation-Part-I 

 

So, to do that what we will do? We will leave this example and go back to the Euler’s 

equations of motion along the different directions. So, we have written the Euler’s 

equation of motion along x which is there in the board, similar equations are there along 

y and z. Now what we are interested to we are interested to write or to find; what is the 

difference in pressure between 2 points? 

(Refer Slide Time: 00:49) 

 

So, let us say that we have 2 points - 1 and 2 which are quite close. So, that they are 

connected by position vector dl d l is given by dx i plus dy j plus dz k. This is the 

position vector that we are looking for. What is our interest to find out, what is the 

difference in pressure between points 1 to 2? So, whatever we did in the previous 

problem a bit more informally, we will now try to generalize it for a very general case 

that what happens in that case. 

To do that we will note that if you want to find out the difference in pressure between the 

2 points here pressure is a function of what? X, y and z, so you can write these as the 

sum of these 3 partial derivative terms. Each of these terms we can substitute from each 



component of the equation of motion. So, the first term you can substitute from the x 

component of the equation of motion which is written below. So, let us write that this 

will be minus of, so this you are writing now the plus of this one; that means, this term 

will become minus the right hand side. So, that will become minus of rho then plus a 

body. So, plus rho b x dx, b x with dx multiplication will come separately we are just 

isolating the d p dx term. So, we are not writing the dx together with this. So, if you also 

consider the dx term together with this then it will be the entire thing multiplied by dx. 

Now we will try to write it in a compact form because like it is possible to utilize some 

of the very well known identities of vector calculus to simplify it. So, what we will do is 

we will write this particular term in a vector calculus notation. So, we can write this as v, 

v dot with? Gradient of u, right, so then you will get these terms. 

Keeping that in mind that other terms will also give similar expressions like what will 

change for the second term in place of this u it will be v, in place of this u it will be v, in 

place of v x it will be v y like that. So, it is very very analogous and we can write the 

general expression for d p as minus rho. Now we will collect all the terms we will keep 

all the terms of similar type together, this is one term then next we will write that 

acceleration term that is the convective component of the acceleration term is the 

temporal component then minus rho and the body force term. 

So, these 3 types of terms are there, we will just for the writing convenience we will call 

it term 1 and there is logic behind that these terms are containing expressions of similar 

nature. So, we can simplify them in groups. Let us write or let us try to simplify terms 1, 

2 and 3 separately, we will do that keeping in mind that the term 1 is the transient term 

and when we are simplifying we will be keeping in mind that we will be utilizing the 

vector dl which connects the 2 points which are close to each other. 
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So, the term 1 is minus rho now can you write it in terms of the 2 vectors v and dl 

remember v has components u, v, w, dl has components dx, dy, dz. So, if you write for 

example, like this dot with dl then that expression and this is the same it is a dot product 

of this with this of course, you have a partial derivative of that term. So, it is just writing 

the same expression in a vector form. 

Let us write the term 2, how do you write the term 2? Minus rho again let us try to write 

using the vectors v dot let us check whether this is all right or not, see and then we have 

to keep in mind that this is a scalar term right. So, first of all whatever is a vector 

operator it should give back a scalar. So, you have one dot product and the dot product 

and the product of that is expected to give back a scalar, you can just check let us check 

that. So, you can write this as v dot del then u dx plus v dy plus w dz. So, it becomes of 

the same form as that given by the term 2. Now it is possible to simplify the v dot del v 

using a vector identity what is that? So, v dot del v is equal to; one important thing we 

will see that whether the bracket is to be put here or after the v and till this is not 

complete. So, let us tentatively write it. 

This is a very well known vector identity. Now you see that what is this v dot v is a 

scalar the gradient operator operating on the makes it a vector and this is very clear this 

is a vector. So, this should be a vector. So, when you have v dot del this is a scalar, but 

this being a vector keeps it a vector. So, whenever you write an identity these are certain 



common sense things that you should check because depending on what you operate the 

same thing may look may become a scalar and vector very easily, depending on how you 

put your cross products and the dot products. 

Now why we are putting in this particular form is because here you get the vorticity 

vector and we were finding out that the condition of rotationality or irrotationality has 

some influence on the pressure difference between the points and these vectors only is 

responsible for whether it is rotational or irrotational. So, we will put that simplification 

here we will put this as minus rho half in place of the call of the velocity vector we will 

write the vorticity then dot dl. 

For the term 3 what we will assume it is again a very general term what we will assume 

that the gravity is the only body force which acts along the negative z direction as we 

considered in the problem that we discussed just before this. So, what we will assume 

that b x is 0 b y is 0 and b z is minus g because that is the common thing that we 

encounter in many problems, but if there are other components of body force you know 

that how to simplify like you can just put the corresponding components here. 

So, the then that will become term 2, will just become minus rho g dz. Since it has just 

only one scalar component it is not useful to write it in a general vector form it will not 

give us back many things. So, d p is the sum of term 1, term 2 and term 3. 

We can simplify the term 2 and term 3, further let us let us try to simplify the term 2 one 

more step. So, minus rho let us now consider the dot product of these with d l. So, half 

what is v dot v? v dot v is V square, where this capital V is the resultant velocity. So, that 

we are writing is dot with this one sorry that is the first term and you also have a term 

plus rho v cross vorticity vector dot dl, you can recognize that it is like a scalar triple 

product of 3 vectors like a dot b cross c. So, we will keep that simplification for a 

moment and just consider the first term. So, what does the first term look like? Half that 

is the first term I mean first term of the term 2 and then rho, you can clearly see that the 

first term of the term 2 will become what? It is like it will become d dx of v square it is 

sum of the 3 partial derivatives will give the total 1. 

So, this will become at the end the simplified form minus half rho d of v square. So, this 

is like not d dx just the total d. So, this is partial derivative with respect to x into dx, this 

is partial derivative of y into dy and that with respect to z into dz. So, that is give that is 



giving the total d plus whatever term that is remaining. Now let us put back all the terms 

together in the equation. So, what is our equation our equation is term 1 plus term 2 plus 

term 3 is equal to 0; that means, minus rho that is the term 1. So, let us sorry d p not 0, it 

was d p then term 2 in place of term 2 we will write minus half rho d v square plus rho 

then let us write dl dot b cross zeta that is the term 2 and term 3 is minus rho g dz is 

equal to d p. This is a compact form and it is possible to simplify it even further based on 

certain special cases. 
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So, what special cases we will be interested in let us see. What special cases maybe let us 

take all the terms in the same side, so you have d p plus half rho d v square plus rho g dz 

up to this you can find some similarity with the Bernoulli’s type of equation that you 

have encountered earlier what you are getting also some 2 extra terms, let us write those 

extra terms. So, plus then minus rho this equal to 0 because these 2 terms are like beyond 

what you have encountered many times we will try to put more attention to the last 2 

terms. We will put the first important attention on the last term because this particular 

term in a case when it is a steady flow this trivially goes away. So, there is no big 

controversy or there is no big uncertainty in that that is quite understandable. 

But the last term there are many possibilities when the last term can become 0 what are 

the cases. So, if you just write it in a determinant form when you are having such a scalar 

treatment product you can write it in terms of determinants where each row of the 



determinant will represent the components of the vectors taken in the particular order. 

So, you have like dx for dl you have dx dy dz, for v you have u v w for the vorticity you 

have. 

Now let us consider a case when this say rho 1 just look it into mathematically say rho 1 

is a scalar multiple of the rho 2, when it is possible? 

Student: (Refer Time: 20:18). 

When the direction of dl and the direction of v are the same then one will just be the 

scalar multiple of the other because direction wise they are representing vectors oriented 

identically. So, when that is possible what is the special dl for which that is true, if it is 

located along a stream line. So, if we consider this as like a term A. So, we will identify 

in certain cases when A becomes 0. So, A equal to 0 when certain cases one is dl is along 

streamline let us call the streamline direction as d s, s for stream wise coordination. 

When that is the case we do not care whether it is an irrotational flow or not, it does not 

matter whether it has components 1 0 components of the vorticity vector yes. 

Student: When it is a streamline flow then how can we say that (Refer Time: 21:29). 

There is nothing called as streamline flow first you have to understand, there is a 

streamline in a flow, there is nothing called streamline flow, next. 

Student: (Refer Time: 21:39) dx, dy, dz, multiple of; 

This is what, this is the length element this is the line element that you are considering 

this is the component these are the components of the velocity vector what is the 

definition of a streamline, such that tangent to the streamline at any point represents the 

direction of the velocity vector. So, tangent is this direction dl, a small elemental 

direction and this is the velocity vector direction. So, if they are located in the same 

direction; that means, they are parallel vectors; that is the definition of a stream line 

nothing extra. 

So, if dl is located along a streamline then we do not care whether it is a rotational or 

irrotational flow, but if it is not then if the vorticity vector is identically equal to 0 then a 

will become 0, no matter whatever is like, no matter whether dl is located along a 



streamline or not. So, vorticity vector is a null vector this is irrotational flow. So, you can 

clearly see that if it is a steady and irrotational flow these 2 terms go away and then sum 

of these 3 is 0; that means, if you integrate that the integration will give a constant of 

integration and that is what we actually saw in the example the problem that we 

discussed before going to this derivation. 

There is a third case I mean there could be many such cases, but a third case say you 

have the V cross this vorticity vector is perpendicular to dl, these 2 cases are more 

common cases that you encountered this is not a very common case you encountered, 

what this mathematically you cannot rule out. You have a vorticity vector you have a 

velocity vector you can find the cross product and you can find the element in a direction 

which is oriented along that cross product and then if you take such an element then for 

such an element also for steady flow it will appear that the Bernoulli type of equation is 

valid. So, this is not a Bernoulli type of equation this is in fact, one step before that 

where we do not make any explicit assumption on how the rho or the density varies. So, 

this is still Euler equation of motion. So, this is a more general way of writing the Euler 

equation of motion where you are considering all the individual components and trying 

to write that in a vector form, but at least we can understand that this term becomes 0 

under what cases. 

So, let us say that we are considering one such case, let us say that we take an example 

we are considering along a stream line that is what do we mean by along a streamline; 

that means, we are interested to find out these changes. So, this relates what? This relates 

change in pressure, change in velocity, change in elevation with respect to a change in 

position vector from point 1 to point 2. So, when we are considering along a stream line; 

that means, we are interested to evaluate that change by moving along a streamline. So, 

never consider anything like a streamline flow again I am repeating there is nothing 

called as streamline flow, in flow there are streamlines but it is not a streamline flow. So, 

when you have a streamline we are looking for the difference in like this variables along 

a streamline. So, when you have along a streamline and let us say steady flow as the first 

example, this is example 1. 

So, then what you have then A term will become 0 this term because of steadiness will 

become 0. So, you have d p plus half rho d v square plus rho g dz equal to 0 this is 

known as Euler equation of motion along a streamline. 



Now, this is valid both for compressible as well as incompressible flows, you are not yet 

committed of how the density changes. So, now, we are interested to see that how the 

density changes, to do that we will let us say we will write it in this form d p by rho plus 

half d v square plus rho g dz and try to integrate it. So, we will try to integrate it, rho will 

not be there because rho we have already divided by rho. So, when we try to integrate it 

what are the points over which we are integrating? 

We are integrating with respect to 2 points 1 and 2 which are located on the same 

streamline because we have considered along a streamline that is we are considering this 

particular case which has made the term A equal to 0. So, when we do that this equal to 0 

that is still valid for any type of flow compressible or incompressible. Now you make an 

assumption that rho is a constant, assume that is a special case of an incompressible flow. 

So, then what you can write, you can take the rho out of the derivatives. So, you can 

write p 2 minus p 1 by rho plus half v 2 square minus v 1 square plus g into z 2 minus z 1 

is equal to 0. This is nothing but the Bernoulli’s equation that is p 1 by rho plus v 1 

square by 2 plus g z 1 is equal to p 2 by rho plus v 2 square by 2 plus g z 2. So, it is like 

it is in fact, the Bernoulli’s equation. 

Now, you tell that what are the assumptions that we followed in deriving this. So, this is 

the Bernoulli’s equation. We will come into the physical significance of this Bernoulli’s 

equation in the next lecture, but let us at least try to identify that what are the 

assumptions that we utilized to derive this. So, what are the assumptions? 
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Student: (Refer Time: 28:15). 

So, first start with the most basic assumption when we wrote the equation of motion 

what we assumed. 

Student: (Refer Time: 28:24). 

Only gravity is the only body force it is, but it is like it is very very explicit, what is not 

so explicit is inviscid flow. So, inviscid flow is very important. Then steady flow, density 

is constant, it is a special case of incompressible flow. 

Student: Irrotational flow. 

Not irrotational flow we have not taken this condition 3, when we take irrotational flow 

we get a more freedom then we need not be restricted along a streamline, but when we 

are considering along a streamline then it need not be irrotational if it is irrotational fine 

if it is not irrotational still ok, so along a streamline that is what we considered in this 

example. So, these are the four ones that these are the four assumptions that we have 

considered in deriving this. 

Now these are the assumptions that we commonly use because commonly we utilize the 

Bernoulli’s equation along a streamline. At the same time we must understand that these 

are not always the cases inviscid flow is the most important thing, now can you tell that 



if you are thinking about Euler’s equation along a streamline out of this which 

assumption is not necessary, say the Euler’s equation of motion along a streamline. 

Student: (Refer Time: 30:02). 

Density equal to constant is not necessary. So, density equal to constant is the additional 

assumption beyond the Euler’s equation before. So, after you make that assumption you 

have to also keep in mind that I would say the most important assumption is inviscid 

flow because many times we tend to apply the Bernoulli’s equation in cases when 

viscous effects are very much present, maybe many times you have solved such 

problems in your earlier high school exercise problems to solve like to get the velocity 

pressure and so on we will see that that is not fundamentally correct in some cases you 

can get rid of that and still get some qualitative picture we will see that when and when 

not, but fundamentally it has to be inviscid flow. 

Steady flow is for this version of the Bernoulli’s equation, but you can also have an 

unsteady version of the Bernoulli’s equation that we will see later on maybe in the next 

class that where we will retain this term and we can write a Bernoulli’s equation by 

considering even the steady flow along a streamline unsteady flow along a streamline. 

So, only for this version it is steady flow and that is the standard Bernoulli’s equation, 

but we also have unsteady Bernoulli’s equation. So, for unsteady Bernoulli’s equation 

the steady flow assumption is not required, rho equal to constant is always required 

because you are taking rho equal to constant and taking out of the integral and along a 

streamline is required for this special case when you are not bothered about whether it is 

irrotational or not, if it is irrotational then this need not be the case, so maybe relaxed for 

irrotational flow. 

So, what is the summary? The summary is if it is an irrotational flow and other 

conditions are satisfied that is inviscid steady and rho equal to constant you can write p 

by rho plus v square by 2 plus g z is constant need not always be along a streamline. So, 

this is constant no matter whether you are considering the points 1 and 2 anywhere in the 

flow field that is very important. So, points 1 and 2 maybe located anywhere in the flow 

field still this equation is satisfied if it is an irrotational flow, if it is not an irrotational 

flow then 1 and 2 have to be located along the same streamline. So, these are very very 



important fundamental assumptions that go behind the Bernoulli’s equation. We will 

stop here today, we will continue again in the next class. 

Thank you. 


