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So welcome to this session of the course fluid machines. Today we are going to discuss about 

few problems related to Francis turbine and Kaplan turbine. So the problem statement for the 

1
st
 problem is show that when the runner blade angle at inlet of a Francis turbine is 90 degree 

and the velocity of flow is constant, the hydraulic efficiency is given by 2 over 2+ tan square 

Alpha where Alpha is the vane angle. So we need to find out the hydraulic efficiency of the 

Francis turbine for the particular case in which the inlet blade angle is 90 degree and flow 

velocity is constant throughout the turbine.   

So at 1
st
 let us see a typical velocity triangle for a Francis turbine. So typical velocity triangle 

for a Francis turbine, so this is the relative velocity at inlet, this U1 is tangential velocity of 

the runner at the inlet, this is V1, the absolute velocity of the fluid at inlet and this, this part is 

flow velocity at the inlet. Now the absolute velocity makes an angle alpha-1 with the 

tangential velocity of the runner which is termed as inlet vane angle. And the relative velocity 

makes an angle beta one with the tangential velocity of the rotor which is termed as blade 

angle.    



This is the turbine runner which rotates, say in this direction. So this part is inlet and this part 

is outlet. At the outlet, fluid leaves radially, so V2 is VF 2, this is the tangential velocity of 

the runner blade at outlet and this is the radial velocity of the fluid at outlet. And this angle 

can be termed as beta 2 which is the exit blade angle. Now in this particular case for the 

Francis turbine, the inlet blade angle is 90 degree. So beta 1 is 90 degree. So in this case the 

velocity triangles will be, so this is the turbine runner.   

So for beta 1 equals to 90 degree relative velocity at inlet will be same as the flow velocity at 

the inlet. This is the absolute velocity at inlet, this is tangential velocity of the runner at inlet. 

The exit velocity triangle remains same. Now we have to find the hydraulic efficiency of the 

Francis turbine.   
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Now let us 1
st
 write the definition of hydraulic efficiency. So hydraulic efficiency can be 

defined in this way, it is a ratio of mechanical energy delivered by the rotor over the energy 

available from the fluid. So mechanical energy delivered by the rotor over energy available 

from the fluid. This definition can also be given in terms of head which is work equivalent 

head, equivalent head over the available head, available head.   

Now the work equivalent head, work equivalent head W is nothing but the energy per unit 

weight of fluid transferred from fluid to the turbine runner, so which can be expressed in this 

way, 1 by 2G times V1 square V2 square + VR2 square - V R1 square + U1 square - U 2 

square. Where the 1
st
 term, V1 square - V2 square by 2G refers to the change in absolute 

kinetic energy of the, absolute kinetic energy of the fluid or dynamic head across the turbine.   



And these 2, combination of these 2 terms can be explained, this can be written in terms of 

static heat difference. So W, so this, now the available head, available head which can be 

termed as H is nothing but W + the energy rejected, energy rejected from turbine at the outlet. 

So H is W + outlet energy will be V2 square by 2G in terms of head. So let us find these 

quantities in terms of the inlet vane angle.   
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So let us 1
st
 draw another triangle, the inlet velocity triangle. So this is given as alpha which 

is the inlet vane angle, this is U1, this is VR1, which is also equal to VF1 and this is V1. The 

outlet velocity triangle is like this, this angle is beta, this is U 2, this is V2 is equal to VF 2 

and this is VR2. Now here our main intention is to express V1, V2, VR1, VR2, all these 

quantities in terms of U1, U2, Alpha and beta. Where Alpha is the inlet vane angle and beta is 

the blade angle at the exit.   

Towards this from this triangle we can write cosine of Alpha will be U1 by V1, so this gives 

V1 as U1 sec Alpha. And tan Alpha can be written as VR1 by U1, so this gives VR1 equals 

U1 tan alpha. Now V2 is VF 2 is equal to VF1 as per the definition of the problem. So in 

problem it is mentioned that the velocity of flow is constant. So flow velocity at inlet will be 

equal to the flow velocity of outlet. So VF1 equals to VF 2. So using this equality of flow 

velocity we can write V2 as VF1 which is VR1 equals U1 tan Alpha.   

Now to express, so till now we have expressed V1 in terms of U1 and Alpha, VR1 in terms of 

U1 Alpha and V2. So now we have to express V R2 in terms of U2, U2 and beta. So cosine 

of beta can be obtained from this velocity triangle as U2 by VR2, this gives V R2 equals U2 



sec beta. All the 4 quantities are now obtained. Now let us substitute these terms in the 

expression of work available head.   
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So this is the expression for work available head. Now I am going to substitute V1, V2 and 

VR2 and VR1. So, let us 1
st
 write again the work available head W is 1 by 2G V1 square - V2 

square + VR2 square - V R1 square + U1 square - U2 square. So V1 we have often as U1 sec 

Alpha, so let us substitute that. So U1 square sec square Alpha. V2 is obtained as U1 tan 

Alpha, so U1 square tan square Alpha. Now let us substitute VR2 and VR1.   

So VR 2 is obtained as U2 sec beta. So U2 square sec square beta, and VR1 is obtained as U1 

tan Alpha, so U1 square and tan square Alpha. And we will keep U1 and U2 as it is. So here 



we can take U1 square common, so this will be sec square Alpha - tan square Alpha. Now we 

can transform this sec square beta in terms of tan square. So U2 square into 1+ tan square 

beta - U1 square tan square Alpha + U1 square - U2 square. So this is nothing but 1.   

So simplifying this expression we obtain U1 square + U2 square + U2 square tan square beta 

- U1 square tan square Alpha + U1 square - U2 square. So this U2 square and this U2 square 

get cancelled and we can say and another thing to note, that there is one U1 square and there 

is one U1 square. So 1 by 2G 2U1 square + U2 square tan square beta - U1 square tan square 

Alpha.   
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Okay. Now from the velocity triangle let us find out what is U2 tan beta and what is U1 tan 

Alpha. So U2 tan beta. So from this diagram we can write that U2 tan beta is VF 2 and from 

this triangle we can write U1 tan Alpha is equal to VF1. But it has been given that VF1 is 

equal to VF 2, so U1 tan Alpha and U2 tan beta, these 2 are equal. So this term will be 0. This 

term will be 0. So W is nothing but U1 square by 2G. Now let us substitute this for W in the 

expression of hydraulic efficiency.   
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So the hydraulic efficiency is the work available head over the W + H, this is H. So W is 

obtained as U1 square by 2G and H is W + the head lost. U2 square by 2G. Now there is one 

small correction here, 2 and 2 will cancel out, so this will be U1 square by G. So here also W 

will be U1 square by G. And H, the head available is nothing but the work available head + 

head at the exit of the turbine which is U2 square by 2G. Now from the velocity for angle we 

can express U2 in terms of, V2 in terms of U2.   

So this is U2 and this is V2. So tan beta will be V2 by U2. Or in this case, if we want to 

express V2 in terms of Alpha, then we can write in this way. So V2 is the flow velocity at the 

exit VF 2, VF 2 which is equal to the flow velocity at the inlet. And the flow velocity at the 

inlet can be expressed in terms of the inlet vane angle. So V2 is U1 tan Alpha. So in this way 

we can express V2 in terms of the inlet vane angle. This definition express, from this triangle 

we can express V2 in terms of U2 and beta but beta is not given quantity in the problem, so it 

is useful to use the relation equality of flow velocity and express V2 in terms of U1 and tan 

Alpha.    
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So let us substitute this expression of V2. So V2 is U1 tan Alpha. So H is U1 square by 2G + 

U1 square tan square Alpha by or U1 square by 2 G, there will not be any 2. So Eta hydraulic 

is U1 square by G over U1 square by G + U1 square tan square Alpha by 2G. After some 

simplification we can obtain U by 2 by 2 + tan square Alpha. So Eta hydraulic is 2 over 2 + 

tan square Alpha. So initially this was the problem, given problem that hydraulic efficiency 

will be 2 by2 + tan square Alpha.   
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So now we move on to solve the 2
nd

 problem which is related to Kaplan turbine. So this is the 

problem definition. So a Kaplan turbine develops 100 megawatt of power under the head of 



4.3 metre taking a speed ratio of 1.8, flow ratio of 0.5, boss diameter 0.35 times the outer 

diameter and overall efficiency of 90 percent. Find the diameter and speed of the runner. So 

we have to find out the diameter and speed of the runner for the given parameters.   

So the power output is given as 100 megawatt, head is 4.3 metre, speed ratio, speed ratio is 

1.8, flow ratio is 0.5 and boss diameter, let us represent this by DB is 0.35 times the outer 

diameter, let us represent it by DO. And it is also mentioned that the overall efficiency is 90 

percent. To determine the diameter, let us 1
st
 try to obtain the flow rate through the Kaplan 

turbine. Let us 1
st
 utilised the definition of overall efficiency, so overall efficiency can be 

written as power delivered over power available.   

Power delivered is given as 10 megawatt for this turbine, so this is than into 10 to the power 6 

watt. Power available is rho Q G H where rho is the density of the fluid, here we are 

considering water, Q is the flow rate, G is the acceleration due to gravity and H is the head. 

Now substituting all the quantities we can determine Q as 10 into 10 to the power 6 is the 

power density acceleration is 9.81, H is given as 4.3 and overall efficiency is 0.9. So flow rate 

can be obtained from here as 263.4 metre cube per second.   

(Refer Slide Time: 23:48)  

 



 

No flow rate is related to the cross-sectional area, so and we can determine diameter from 

there. So before obtaining diameter, let us define what is flow ratio. So flow ratio, this is just 

a definition, this represents the ratio of axial velocity and absolute velocity at inlet. So the 

ratio of axial velocity and absolute velocity at inlet is termed as flow ratio. No flow ratio is 

given as 0.5, so this is 0.5, axial velocity, let us term this as VA and absolute velocity at inlet 

as V1.   

Now V1 can be obtained from the head given, so H is 4.3 metre. So V1 can be obtained as 

2GH equals to 2 into 9.81 into H is 4.3. So V1, you can obtain from this relation in metres per 

second. Now substituting this V1 we cannot and VA from this relation as 0.5 times 2 into 

9.81 into 4.3. This is 4.59 metre per second. So axial velocity is 4.59 metre per second. Now 

the flow rate through the Kaplan turbine is axial velocity times the cross-sectional area A. 

Now this cross-sectional area is the annular area over which the flow is taking place.   

This can be written as 5 by 4 DO square - DB square. Where DO is the diameter, outer 

diameter and DB is the boss diameter. Now it has been given that the DB is 0.35 times DO, 

so let us substitute this. So area is pie by4 times DO - 0.35 times DO square. So flow rate is 

VA times pie by 4 DO square - 0.35 times DO square. We have obtained the flow rate 

previously, so flow rate is obtained as 263.4 metre cube per second. So let us just substitute 

this. So 263.4, axial velocity is also obtained as 4.59 metre per second, 4.59 into pie by4 DO 

square - 0.35 DO square.    

So DO will be, DO can be obtained as 4 times 263.4 by pie into 4.59 into 1 - 0.35 square over 

root. So this will be 9.12 metres. So one of the results now we have obtained, the diameter of 



the runner. So this is the diameter, rather outer diameter of the runner. Now we have to find 

speed of the runner. Now to find this, let us introduce the speed ratio which is the blade speed 

at outer diameter over the absolute velocity at inlet, this is just a definition.   

Now speed ratio is given in the problem as 1.8, blade speed, let us denote this by U and 

absolute velocity is 2GH. Now substituting these quantities we can obtain U as 1.8 times 2 

into 9.81 times H is 4.3. So this you can often as 16.53 metre per second. So this blade speed 

is related to the rotational speed of the turbine.   

(Refer Slide Time: 29:40)  

 

So U is DO N by 60 where N is in rpm. So this relation gives the U into 60 by pie DO. So U 

we have obtained as 16.53 times 60 over pie times DO is obtained as 9.12, 9.12. This gives 

34.6 rpm, so rotational speed of the turbine runner is 34.6 rpm. So this completes our 2
nd

 and 

the last problem. With this I will end the today’s class, thank you.    

 


