
Vibration of Structures 
Prof. Anirvan DasGupta

Department of Mechanical Engineering
Indian Institute of Technology – Kharagpur

Lecture – 09
Modal Analysis: Approximate Methods – I

Last three lectures, we have been discussing about Modal Analysis of continuous systems. Now

we have solved the problem of modal  analysis  which is  nothing but solving an Eigen value

problem as  we have  seen  analytically  which  means  that  we are  exactly  solving  the  natural

frequencies and the modes of vibrations which are characterized by the Eigen functions. Now,

doing an analytical solution is always preferable.

Because  you can  find  out  the  affects  of  various  parameters  of  the  system on the  modes  of

vibration and the modal frequency etcetera. So analytical solution is always preferable. However,

we have seen that  even in  very simple  systems the  solution  of  the  modal  analysis  problem

requires solving transcendental equations possibly which are, which might be quite cumbersome

even numerically.

So, in general analytical solution though preferable are sometimes cumbersome and computation

intensive. So it is of interest to know if a numerical method of modal analysis or approximate

methods of modal analysis are possible. So in this lecture, in the next lecture, we are going to

look at  few techniques  for  solving  the  model  analysis  problem or  the  Eigen value  problem

approximately, numerically. So what is our motivation for studying the approximate solutions?
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So the first motivation is that the analytical solution may be cumbersome. The other things is an

approximate method can provide a quick solution to the modal analysis problem which may be

sufficiently accurate for our purposes.
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So let us look at the methods that are available to us for approximate modal analysis. So we are

going to discuss in this course two methods and two broad methods which the Energy based

methods which will be the topic of discussion in today’s lecture and in the next lecture we are

going to look at Projection methods. 



So as the name suggests this Energy based methods will use the kinetic and potential energy of

the system to determine the modes of vibration or the natural frequencies where the Projection

methods as we will see very soon they use the governing equation of motion directly to solve the

modal analysis problem.
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So the first method that we are going to look at is the Rayleigh method. So this Rayleigh method

is  typically  used  to  determine  the  fundamental  frequency  of  a  continuous  system.  And  this

method is use for Conservative systems. So we use Rayleigh method for conservative systems. 
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So how does this method work? 
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So let us understand this with the example of a bar. So let us consider a tapered bar in axial

vibration. So we write the kinetic energy is one half, the density of the material times the area of

cross-section times and elemental length and the velocity square, now this integrated over the

domain of the bar. So that is the kinetic energy. The potential energy is one half the Young’s

modulus times spatial derivative of the field variable’s square dx and integrated over the domain

of the bar.

Now this system this bar a natural vibration as know is a conservative system which means that

the total energy of this bar is a constant. So the total mechanical energy-- this is a constant. Now

let us suppose that this system is in is vibrating in one of its modes. So as we have already

discussed when a system is vibrating when in one its modes the field variable can be written as a

separable function and space and time in this form.

So this special solution form is valid for a system for this bar vibrating in one of its modes. Now

we will substitute this expression in the total energy of the bar and one we do that.
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What we obtain – so this is the expression of the total energy after we substitute this solution

structure in the total energy expression. Now if this total mechanical energy is to be a constant

then what it would require is that the independent of time. And this is possible only when the

coefficient of sin square omega T and cos square T they are the same which means – so energy is

constant  would imply—these  two the coefficient  of  the  sin  square  omega T and cos  square

omega T they must be equal.

So therefore we obtain this ratio which is defined as the Rayleigh quotient. And this Rayleigh

quotient is the key concept in Rayleigh methods. 
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So what we have done is we have considered the modal solution substituted it in the total energy

expression  total  mechanical  energy  expression  and  finally  we  force  that  the  energy  to  be

independent at time by matching the two coefficient of the Sin square and the Cos square omega

T terms to obtained omega square as a ratio which is known as the Rayleigh quotient.

Now sometimes this Rayleigh quotient is also expressed as maximum potential energy divided

by the maximum kinetic energy. So the amplitude so the maximum potential energy would be the

amplitude of-- the maximum potential energy would be amplitude of the sin square omega T

term where that the maximum kinetic energy would be the coefficient of the sin square omega T

term and of course this omega is solved in terms of this. 

So we-- so this is one so from here we solve for omega square as we have done here. Now this--

in this Rayleigh quotient if you know the exact Eigen function, so if you substitute where I am

using this exact superscript to indicate that U exact is the exact Eigen function for a particular

mode. In that case, if you put this in the Rayleigh quotient what we will get is the exact circular

Eigen frequency corresponding to that mode.

But the problem comes because we do not know the exact Eigen function. So in that case how do

you use this Rayleigh quotient? So usually what is done is we try to minimize this Rayleigh

quotient. So and by minimizing the Rayleigh quotient we obtain the fundamental frequency. So

the fundamental frequency square is obtained by minimizing the Rayleigh quotient over a space

of possible Eigen function U (x).

Now  there  is  a  restriction  on  how  you  can  use  U  (x)  in  this  minimization  problem?  The

restriction is U must be a member of the set of what are known as Admissible functions. So this

U is a set of Admissible function. So you must choose the possible Eigen function from the set of

this Admissible functions. Now what are Admissible functions? This we will come to very soon. 
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So let me write for this problem.
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So the fundamental frequency square is minimization over the set of admissible functions of the

Rayleigh quotient. Now we come to this admissible function. So what are admissible functions?

These  are  functions  which  satisfy  the  following  two  properties.  The  first  property  is  it  is

Differentiable at least up to—so these function are differentiable at least up to the highest order

of spatial derivative in the energy expression.

So of course these functions are special function and so they must be differentiable at least up to

the highest order of space derivative or spatial derivative in the energy expression. So in this



example  that  we  are  considering  the  highest  order  of  space  derivative  is  1.  So  the  set  of

admissible function should be differentiable up to first order. The second important property that

it should satisfy is that it should satisfy all the geometric boundary conditions of the problem. 

So admissible functions must satisfy all the geometric, or essential boundary conditions of the

problem. So they satisfy all the geometric or essential boundary conditions of the problem. So

these  two  properties  the  functions  that  satisfy  these  properties  are  known  as  Admissible

functions. Now such functions can be constructed using Polynomial, trigonometric function and

other such elementary functions.
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Now let us look at this example of tapered bar. So as you can see it is fixed at X = 0 and its free

at X = 2l. So the geometrical essential boundary condition is on the left boundary where the bar

is fixed. So we must choose functions admissible functions which satisfy the boundary condition

at the left. So let us look at such functions.
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So we must have so we have to choose admissible functions for this problem such that it is 0 and

X = 0; this is the minimum condition that is required. So a possible choice we may write it like

this x over l but we can have a class of these functions by raising it to the power alpha. So we

actually have functions which depending on alpha for example if alpha is one then this is linear

for other powers, it can go like this or you can go like this.

Now, so this alpha we will initially keep it arbitrary and we are going to substitute this in the

Rayleigh quotient and we are going to look at what is the Rayleigh quotient with this expression

of admissible function. Now one thing that you can see that we now have not one function but

we have a class of function and we can adjust alpha and see which function minimizes  the

Rayleigh quotient. 

So this alpha provides us with a angle to solve a minimization problem as we have formulated it.

So if you calculate the Rayleigh quotient with this admissible function then the Rayleigh quotient

turns out to be a function of alpha which is unknown a Z and this expression turns out to be this

can be solved very easily and what we obtained is this expression at the Rayleigh quotient. 

Now, so this term is the-- I mean has a properties of the bar the geometric as well as material

properties of the bar where this coefficient which is a function of alpha determine the Rayleigh

quotient, now this alpha is unknown. So we can put various values of alpha or we can minimize



the Rayleigh quotient with respect to alpha and determine alpha. So let us see what happens if

alpha is 1. And this remember is omega square. So this turns out to be 70 over 16. 

So this is an estimate of omega really the first the fundamental circular frequency and this turns

out to be-- Now let us see what happens if we minimize with respect to alpha. So which means—

so if you do this minimization this gives and corresponding to this—so you see that this value is

lower than this. So this is a better estimate of the circular natural frequency. Now we have solved

this problem of the tapered bar in a previous lecture analytically and the exact circular natural

frequency that we determine was this. 

So this is still lower as you can see that this is higher than the exact but they are quite close this

is within 3% of the exact. So we have fairly accurately estimated the fundamental frequency of a

tapered bar using very simple method. But this of course this gives the best estimate based on the

found of the structure of admissible function that we have chosen. But remember that when we

go onto calculate stress since this alpha is less than one for our best estimate the stress that we

will calculate at X = 0 will be infinite. 

So  it  will  have  some--  I  mean  it  will  give  some unrealistic  estimates  of  stress  in  the  bar.

However, the frequency estimate is fairly accurate. Now here using Rayleigh method we have

estimated the fundamental frequency. Now can we now go on to find out the higher frequencies?
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Now that is possible using what is known as the Rayleigh-Ritz method. So what we additional

have  in  this  method  is  the  Ritz  expansion.  So  we  make  use  of  the  Ritz  expansion  of  the

amplitude function in the Rayleigh quotient.  So what I  mean, so if  you see with this  – this

Rayleigh quotient let us say for our problem of the tapered bar. So we will minimize this and U

has to be chosen from the set of admissible functions.

Now this U the amplitude function we will expand and put this symbol to till this distinguish this

function  from the  basis  function  that  we are  using.  So like  in  the  previous  example  in  the

Rayleigh method we had kept an unknown parameter alpha. Here we will expand the amplitude

function in terms of admissible basis function and set an unknown coefficient alpha; so this is a

linear combination of this basis functions admissible functions. 

So these are all  admissible functions.  And we can take any number of turns. Now when we

substitute this – this kind of an expansion the Rayleigh quotient can be written as so this you can

write as a vector multiplication. So alpha is column vector and U is also column vector, so the

dot product will represent this scalar function U tilde there. And when I substitute this expression

in the Rayleigh quotient, I can write in this form where K the matrix K-- so the ijth element is

expressed in this form and similarly for the ijth element of this matrix M is expressed in this

form.



Now we-- this remember this alpha this alpha vector is unknown. So we have to minimize with

respect to this vector alpha.
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So which implies that- now this Rayleigh quotient is a function of this vector alpha and this must

be put to 0 so the derivative must vanish for extremization. Now this derivative implies that the

derivative has to be taken with each element with this vector alpha. So we have-- if there are

capital N elements in this alpha then the N equations in N unknowns. So if you consider this

expression of the Rayleigh quotient and if you perform this derivative which is straight forward

finally what you will arrive at.

Now here how will  omega enter? W have used this  expression here.  So if  you perform the

derivative this coefficient  actually  turns out to be this  ratio which I am replacing by omega

square. Now this is a discrete Eigenvalue problem which can be solved very easily to determine

omega and this vector alpha the Eigen vector alpha and finally once we have the circular Eigen

frequency and the corresponding vector alpha I.

These can be used to determine the corresponding Eigen functions using those basis functions—

basis function vector, vector U. So using Rayleigh-Ritz method we can find out not only the

fundamental but hard modes of vibration. Now as a thumb rule if we want because the accuracy



of these various modes will be different. So as a thumb—rule of thumb we if we want N modes

accurately we must state 2N terms in the expansion.

And this is rough estimate I mean rough way of estimating how many turns you must have in the

expansion. And this may or may not work always but this is a good way to start. So if you want

N modes accurately, reasonably accurately then you must have double the number of terms in

your expansion.
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Now there exists  another  method which is  quite  powerful  in  this  class of methods which is

known as a Ritz method. Now in the Ritz method we use the idea of Ritz expansion of the field

variable  and substitute  this  expansion directly  in  the variational  formulation.  So this  method

works with a variational formulation of dynamics. So let us see for once again for the tapered bar

we known that the variational formulation for this tapered bar means.

Now here we use this expansion again in terms of admissible function. Now once you substitute

in the variational form in the variational formulation and simplify we obtained this where – well

this integration over the space as already been performed so we substitute this here and since this

function admissible function known is basis to us we can perform this integration and obtain this

variation of this discrete problem this metrics M and K a given by this expression.



And we know that and this is now the lagrangian of a discrete system and the equations of

motion can be immediately written. So in this Ritz method you have essentially discretized our

problem.  Now once  we have  discretized  we can  search  for  solutions  as  we do for  discrete

systems. So we search for modal solutions of this form and we solve Eigenvalue problem. So

after these things are very standard. 
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So let us look at the axial vibrations of the tapered bar of once again. So here I have written out

the admissible function that we have chosen so H of x; for J 1 and 2 we have- so we have taken

two functions and discretized using these two functions, the equation the discretized equation of

motion is shown below. So once you have the discrete equations of motion. 
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Then the standard procedure follows which means that you assume a solution structure as shown

here. You come to the Eigenvalue problem and finally the characteristic equation. Now if you

solve this characteristic equation you will obtain the Eigen frequencies of the system. 
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Now solving this we obtained the circular Eigen frequencies as you can see omega 1 superscript

capital R calculated using the Ritz method and similarly omega 2 superscript capital R and they

are compared with the exact circular Eigen frequencies. And you can see that the fundamental--

we have taken two turns and the fundamental is fundamental frequencies, circular frequency is

matches quite well with the exact while there is some error in the—the second circular natural

frequency. Now this Ritz method and even Rayleigh method this has an Upper-bound property.



(Refer Slide Time: 57:34)

Which means  that  the natural  frequency calculated  from this  approximate  method is  always

greater than the exact which means that this gives an upper bound the actual natural frequency of

the system is lower than what you calculate using the using these approximate methods. 
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Now here, you can see the Eigen vectors K1 and K2 and the corresponding Eigen frequencies

that have been determined by using the Ritz method. And once you plot these Eigen functions,
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So this shows the comparison of the Eigen function calculated by the Ritz method and those

obtained from the exact solution that we had discussed previously. So again you see that the

fundamental Eigen frequency matches quite well with the exact while that of the second mode is

an error especially at x over l equal to one. 

Since  we  are  considering  only  admissible  functions  which  satisfy  the  geometric  boundary

condition which is at x equal to zero while the natural boundary condition is not satisfied with

two terms you have to take more and more terms and then there is a conversion to the exact

solution. 
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Now will summarize this lecture, so we have considered approximate modal analysis based on

energy methods which uses admissible functions. We have looked at three methods Rayleigh

quotient, Rayleigh-Ritz method and Ritz method and these methods give have an Upper-bound

property of the Eigenvalue estimate.  And these methods work for conservative systems with

potential forces with that we conclude this lecture.


