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So let us continue our discussions on Modal Analysis that we had started in the previous lecture.
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So, today we are going to take yet another example of a system consisting of a bar of varying

cross section. So, this is a bar of varying cross section. Consider that A 0 is the area of cross

section at the fixed end and at the free end, it is something like A 0 / 4. The field variable is

represented by u (x,t), which represents the actual displacement at any point x at any time t. We

assume that Rho is the density of the material of the bar.

And of course A as a function of x is the area of cross section and Young’s modulus is E. And the

length of the bar is l. So, the equation of motion of actual vibrations of a bar of variable cross

section, may be written as this. The boundary conditions for the system that we have considered

are given by the displacement is 0 at z = 0 and at the free end we have a dynamic boundary

condition, which is a no force boundary condition, which can be written as this. 



Now, once again we assume solution for as we have discussed in the previous lecture, so you

consider the solution of this special structure. And if you introduce the solution in the equation of

motion,  then,  after  some simplification  we arrive  at  the  differential  equation.  So,  this  is  an

ordinary  differential  equation  obtained  by  substituting  this  solution  form in  the  equation  of

motion and correspondingly the boundary conditions for this differential equation are given by,

so this is the Eigen value problem for our system.

So, we have to solve this Eigen value problem in order to find out the circular Eigen frequencies

and circular characteristic frequencies Omega and the corresponding modes of vibration which

are given by the Eigen functions of this Eigen value problem. So here of course, c is E, the

Young’s modulus divided by Rho that is c Square. Now, for a general variation of the area of

cross section, this may not be solvable analytically. 

So, what we are going to attempt here today is to try to find a class of systems or class of

variation of cross sectional area for which this problem might be solvable analytically. So to see

that how or to find that class let us make variable transformation, let us consider a new variable

W (x), which is expressed as some unknown function h of x into our amplitude function U (x). 

Now if you differentiate, so U Prime of x can be written as. So this implies, now if you identify

this h square, this quantity h square with the variation, the area then you can eliminate or replace

this term with this expression and if you make the substitution in this Eigen value problem, the

differential equation of the Eigen value problem then you can very easily see that this will turn

out to be. 
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So  if  you  substitute  this  U  in  terms  of  W in  the  differential  equation  and  make  some  re

arrangements then you can write the differential equation of the Eigen value problem in terms of,

in this form and the corresponding, so here this is the differential equation in terms of the new

variable W. Now for a special choice of this function h, this differential equation can be written

in or can be expressed in a very familiar form or very simple form. 

If h double Prime over h is a constant let us say Alpha, where alpha could be a positive or a

negative constant. So for such a class of systems our differential equation of the Eigen value

problem  can  be  rewritten  as.  Now  the  corresponding  boundary  conditions  can  be  obtained

similarly and which turn out to be.  So this  is our new Eigen value problem in terms of the

variable W.

So we are looking at  a class of systems for which this  function h double Prime over h is  a

constant, which is alpha, which were positive or negative so this class of system is characterized

by variation of h which maybe or which is hyperbolic for Alpha greater than 0, it is harmonic for

Alpha less than 0 and its quadratic, h is a quadratic function of x if Alpha is 0. So let us consider

a particular case that I had shown in this figure. Here the radius is reducing linearly and the area

goes from A0 to A0 over 4. 



So in that case, the variation of the cross-sectional area maybe expressed as A0, remember that

this is h Square, so if this is h Square then h, so h is linear in x and for this situation if you

substitute this expression here then you will find that Alpha for this special case is 0. So if that is

0 then this simplifies further, the differential equation simplifies further and the solution can be

written as. So the general solution of this differential equation is given here. 

Now when you use the boundary conditions, so W (0) is 0 would imply H is 0 and the second

boundary condition at the free end gives us the characteristic equation so which means here, so if

H is 0 then W reduces to, now if you substitute this expression here at x equal to l. So, Omega

Prime is given by minus of 1 over 2 l under root A 0 into minus of 1 over 2 l and so this

expression becomes just -1. 

So from here we obtain, here of course 1 over l will remains so what we obtain by applying these

two boundary conditions is the characteristic equation of our system. So this is the characteristic

equation  for  a  fixed  free  bar  with  cross  sectional  area  varying  in  this  form.  Now this  is  a

transcendental equation which has to be solved numerically.
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Now a good way to visualize the solution of this transcendental equation is to make a graphical

plot. So in the x-axis I have Omega l over c so our characteristic equation is, so I will plot, so I



will rewrite this as, so the tangent of Omega l over c looks roughly like this and minus of Omega

l over c is a 45 degree line, - 45 degree line. 

So  these  two  functions  are  equal  at  these  points  which  represent  the  solutions  of  the

transcendental equation. So these solutions are obtained, so this point the first intersection gives

us Omega 1 is 2.029 c over l, similarly Omega 2 and so on. So you can realize that there will be

infinitely many intersections which are discrete so they will be countably infinite solutions of

this transcendental equation and for higher intersections you have an approximate solution for n,

for high values of n. 

So once we have these Eigen values are the circular natural frequencies of the system, we can

find out the corresponding Eigen functions, which describe the modes of vibration of the system.

So these are also now indexed and are given by. So these are in terms of the new variable W.

Now we can go back to our original variable U and write the Eigen functions. So this is from the

structure of W that we had selected so W was nothing but. 

So for our original problem the Eigen functions turn out to be these corresponding to the Eigen

values of the circular natural frequencies given here. Now these Eigen functions may be drawn

approximately. Here the amplitude function is or it represents the actual displacement of the bar.

So this is the first mode of vibration with the circular natural frequency given here. The second

mode looks something like this. 

These  things  can  be very easily  plotted  on the  computer  and visualize.  So here  we find an

antinode, the node, this is the node at which the solution or the bar, so this is the point in the

second mode, this point does not move in the, it always remains in its equilibrium position. So

this is the node for the second mode, there is one node in a second mode and no node in the

fundamental for the Eigen function U 1. 

So this node as we discussed in the previous lecture is the point  on the bar, which remains

stationary at all times.
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Next let us consider a system, a continuous system which is interacting with a discrete system.

So as an example, we consider a uniform bar fixed at one end and attached to a simple harmonic

oscillator in this manner. So, here we have a discrete mass represented by capital M and a spring

of stiffness capital  K, which is attached to a bar of length l.  This kind of systems are quite

common, when we have to put absorbers, for example, on a vibrating continuous system or a

vibrating structure. 

So this example is one such system in which we have a continuous system, which is a bar in

actual  vibration  with a  discrete  oscillator  attached.  So,  we will  call  them as  hybrid systems

because we have both continuous as well as discrete systems in this example, so the equation of

motion are now the equations of motion because we have a bar and an oscillator. So, we have

two equations of motion, for the bar, the equation of motion can be written directly in this form,

where c square is E over Rho. 

For the oscillator the equation of motion can be easily written. So, y measures the displacement

of the mass M from its equilibrium position.  So, as you can realize we have two dependent

variables, one is the field variable U, function of x and time and the co-ordinate of the discrete

mass M given by y. Now the boundary conditions for this bar can be easily written, so u at 0 for

all times must be 0 is a fixed end, on the right end of the bar we have this oscillator. 



So, we have a dynamic boundary condition, so this must be the force exerted by the spring at this

end. So, these are the two boundary conditions for the bar. Now as I mentioned, this system now

has a field variable for the bar and a co-ordinate of this and the co-ordinate of this discrete mass

M. So we can represent these variables as a vector and search for solutions of the form, this as

we had done before. 

Now it may be mentioned that this vector that we are representing, it represents the configuration

of the system in a dimension, which is infinity + 1, infinity because of this bar as we already

know and + 1 because of this discrete system. So the modal space is of dimension infinity + 1, so

if you consider a solution structure like this and substitute in the equations of motion, then you

can immediately obtain, so as with the structure of solutions that we have been assuming.

We are searching for solutions of this form, we have synchronous motion of the bar and the

discrete mass, well all points of the bar and the discrete mass. So this, these are the equations that

we  obtained  after  substituting  the  solution  in  the  differential  equations  and  the  boundary

conditions tell us U at 0, capital U the amplitude function at 0 must be 0 and if you substitute this

structure here and simplify, we obtain the condition at the right boundary in this form. 

So, here I have used this equation to simplify the structure of the boundary condition at the right

end of the bar. So, our Eigen value problem now is described completely by these equations and

the boundary conditions. So this is what we have to now solve.
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Now the solution of this differential equation may be represented in this form and if you use the

boundary conditions, so the first boundary condition for example directly implies C, capital C is

equal to 0. If you now, this therefore becomes simply x time Sin of Omega x over c, now if you

substitute  this  in  the  second boundary condition  and simplify, then  can  be checked that  we

obtained this condition, which is the characteristic equation of our system. 

Now again, this is the transcendental equation which has to be solved numerically for the Eigen

values Omega, so you will have discrete solutions of this transcendental equation but infinitely

many solutions exist. So, you have countably infinitely many circular natural frequencies of the

system obtained by solving this transcendental equation and corresponding to these Eigen values

or circular natural frequencies.

You have the Eigen functions, the corresponding Eigen functions for the bar and corresponding

to  these  Eigen  functions,  you can  now find  the  amplitude  function  for  or  amplitude  of  the

discrete  mass.  So,  this  is  the  amplitude  function  for  the  bar  and  this  is  the  amplitude,  the

corresponding amplitude at the kth mode for the discrete mass. Therefore, the general solution

may be represented by super posing all these solution in this form. 

So, this is the general solution for the system. So you can see that the motion of the system is

taking place in a modal space, which is of dimension infinity + 1 and as we had visualized in the



case of string for example,  this  the motion of this  bar with discrete oscillator  is nothing but

motion of a point in this infinity + 1 dimensional modal space or configuration space of the

system. Now we can have two special cases, which fall immediately from the analysis that we

performed.
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One is when the stiffness of the spring connecting the bar and the discrete mass tends to infinity,

which means that the discrete mass is rigidly attached to the bar. In this case, so it immediately

follows  from  this  characteristic  equation  by  taking  K  turning  to  infinity,  the  characteristic

equation simplifies to this and of course, so you can find out the circular natural frequencies

from this characteristic equation.

And the corresponding Eigen functions now only of the bar is given by this, so the discrete co-

ordinate, the co-ordinate of this discrete mass become same as, so y is nothing but u at l. The

second special case is when this mass becomes infinity M goes to infinity. So in that case, the

system simplifies to this, so this is the end of this bar is connected to a spring, which is attached

to a rigid wall. 

So  in  this  case,  the  characteristic  equation  simplifies  to  this  form and the  Eigen  functions,

corresponding Eigen functions are again of the same form. In this case, of course this, since the

motion of the mass vanishes, so y (t) becomes 0. Now, if you look back in this example what we



have discussed and if you see this Eigen value problem, you see this boundary condition here is

dependent on the circular natural frequency or the Eigen value itself. 

So this system, in this system the boundary condition is a function of the Eigen value. So to

summarize, we have discussed today two further examples, for which we have performed the

model analysis by solving the Eigen value problems and we have considered a bar with varying

cross section and we have solved a class of problems for which we have obtained analytical

solutions,  which  we will  compare  against  solutions  obtained  by other  methods  later  in  this

course. 

The other thing that we have discussed today is continuous system interacting with the discrete

vibrating  system.  So,  we  will  continue  this  discussion  further  in  the  next  lecture.  So  this

completes today's lecture. 


