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So in the previous lectures, we had been looking at ways of deriving the equation of motion of

continuous systems. So we derived equation of motion, the boundary conditions and we also

looked  at  initial  conditions,  which  close  the  system  that  means  we  will  then  have  unique

solutions of our system. Now so this part we derive those equations by two ways. One was the

Newtonian approach the other was the variational approach. 

Now, in the next few lectures what we are going to do this analyze these equations or solve these

equations. So the first thing that we note is that we have the Equation of motion.
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Then we have the boundary conditions and we have the initial conditions. So this is what we

have in hand. Now what can we do with these, so in the general situation what we can do is

given these 3 things we can solve the system, we can find out the solution, we can find out the

behavior of the system. But then with change in initial conditions, for example the solution will

change. Now, if the solution changes then we are not able to get a feel of the systems. 



So the question that we put is whether we can find out some characteristic solution of the system.

So, what we are interested in is finding out certain characteristic solutions of the system. By

characteristic solutions, I mean that things that will not change, the solutions will not change,

those things will not change with change in initial conditions or certain properties of the system

that  will  not  change  with  change  in  initial  conditions.  So,  can  we  find  such  characteristic

solutions? 

So the answer to this question is an affirmative and we know this from our study of vibrations of

discrete  systems, so in there we solve for what  are known as the natural  frequencies  of the

system. Natural frequencies, so how fast the system is going to vibrate, so that is, I mean the idea

of that is given by the natural frequencies of the system. By natural we mean that the system is in

free motion, it is not being forced or disturbed from outside as such. 

The other is the mode of vibration. So one thing is the natural frequencies and the corresponding

modes of vibration of the system. So these two constitute  the characteristic  solutions  of the

system and finding them out is known as Modal analysis. So when we do modal analysis, what

we are doing is actually searching for solutions of very special form. 

So if you recall the equation of motion of a string. So suppose it is a fixed string of length l, so

we have the equation of motion and the boundary conditions. Now our field variable is this w (x,

t). Now this is a general function of the special co-ordinate x and the temporal co-ordinate t.

Now, when we do modal analysis we are searching for solutions which are of very special form,

which look like this, where this i is the square root of - 1. 

Omega is known as the circular frequency and W is the amplitude function. So we are searching

for solutions of this very special structure in which, in a certain way, the special function and the

temporal function are somewhat separated. Now, they look separated but remember that we have

introduced, so now this solution is in the complex form. So, this W may in general be a complex

function. In that case, the solution is not strictly separated or separated in space and time.  



But, we will encounter such solutions later in this course, so for the time being we introduce this

complex  solution  structure  and  we  say  that  the  actual  solution  because  our  equation  and

boundary conditions are all real. So the actual solution is obtained by taking either the real part.

So the actual  solution will  be obtained by taking either  the real  part  of this  quantity  or  the

imaginary part of this quantity or a linear combination of the real and imaginary parts. 

So, if you consider this possibility and we will initially most of the systems that we are going to

study will have this capital W, the amplitude function as real. In that case, we can rewrite this

solution in the form. So if you consider that W is a real function and as I mentioned that you can

take the linear combination of the real and imaginary parts of this complex solution form as the

general solution, then your solution looks like this. 

Now from this structure, we can deduce immediately a few properties of this solution. So here

you can immediately see that the solution is strictly separable in space and time. So, space part

and the time part they are separated, then this, the temporal part of the solution can become 0 at a

certain time instant. In that event, all points for all x the solution is 0, which means that the

motion of the string or the continuous system passes through the equilibrium point, all points

pass through the equilibrium point at the same time. 

So, the system passes through the equilibrium point, so all points of the system pass through the

equilibrium point at the same time instant. Then there are points, there can be points at which W

(x) is 0. Such points are called nodes, so there is a possibility of existence of nodes, where W (x)

is 0. The fourth property of this solution structure is that the phase difference between any two

points of the system is either 0 or Phi. 

So,  if  you take any two points  x1 and x2 and if  you observe the product  of this  amplitude

function if this is positive then the phase difference is 0, if it is negative the phase difference is

Phi. There is another interesting property of the solution that is the ratio of amplitudes at x1 and

x2 that is independent of time that is to say, this ratio, so essentially this is independent of time as

we can see. So, we will start with this structure of the solution and see or tried to find out the

characteristic motion of the system.
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So to do this, we will start with the example of the Uniform taut string. So, the equation of

motion and the boundary conditions look like this. Now, we are going to substitute this solution

structure and if  you do that and with a little  rearrangement,  you can easily see the equation

reduces to this, because Exponential i Omega t will never be 0 for any time. So the remaining

part the coefficient of Exponential i Omega t, which is this must be 0.

And along with this, we must have the conditions act x equal to 0 and x equal to l. Now this

differential  equation is very familiar  and the solution can be written directly, now this is the

general  form  of  solution  of  this  differential  equation  along  with  this,  now  we  have  these

boundary conditions at x equal to 0 and x equal to l. So, we will substitute this solution form in

the boundary conditions and we can rewrite the boundary conditions in this form. 

Now if you want to have non - trivial solutions of D and H, which is what we desire, then the

determinant of this matrix must vanish. So that implies, so determinant of this is nothing but Sin

Omega l over c and that must be 0. This equation is known as the characteristic equation because

it yields, this condition yields certain characteristic solutions or properties of the system and they

are  the,  these  circular  frequencies  which  are also known as  the natural  frequencies,  circular

natural frequencies of the system.



So from this condition we can immediately write that Omega, now there are discrete solutions of

these  characteristic  equations  but  there  are  infinitely  many  of  them,  so  there  are  countable

infinite many points at which this will be satisfied for special values of Omega, so we will put an

index n and write this as, where n, this index n goes from 1 to infinity. So there are countable

infinitely many natural frequencies of a string, of a fixed string which are given by these values. 

They  are  called  the  circular  natural  frequency,  also  sometimes  known  as  the  characteristic

frequencies of the system.
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Now once we find these special values of Omega in this matrix for which we have non - trivial

solutions, then we can really find those non-trivial solutions by finding the corresponding D and

H values,  which  look like,  so if  you substitute  these  values  of  Omega n into  the boundary

conditions, now it can be easily seen that the solutions are can be written in this form. 

So anything proportional to this, will be a solution, where again n goes from, so corresponding to

each circular natural frequency, you have this vector, which gives you the actual solution, which

is obtained as, these are called the modes of vibration or they are actually the Eigen functions

and again they are, they correspond to the natural frequencies of the system. So for every natural

frequency there is an Eigen function, which defines or describes the mode of vibration. 



So the total solution now looks like, so everywhere we have this index and so here also I must

have this index n. So, this is the solution. For each n, I can have a solution and since our system

is linear, a superposition or a Summation of this solution is also a solution. So, I can finally sum

all  these  solutions  and  construct  the  most  general  solution  of  a  vibrating  string  with  fixed

support. Now, this structure looks very familiar, if you think of the Fourier Sine series.

So this represents a function, which is periodic and so the periodicity is l, so l is the, where l here

refers to the length of the string. So, this structure of the solution finally what we have is like a

Fourier Sine series. So, which means that any shape of the string, since we know from Fourier

series theory that any shape between two supports. If I have this shape, by continuation I can

construct the Fourier or represent this as a Fourier series, Fourier Sine series like this. 

So, any shape of the string is now at any time instant if you think about the shape of the string at

any time instant then, this is a constant, which is represented here as ‘a n’ and I am just expanded

in terms of this function Sin n Phi x over l. Now we also know from Fourier series theory that

these form the  basis  functions  which  are  Orthogonal.  In  the  sense  that,  so  if  you  integrate

perform this integration.

So if you take any two Eigen functions with different index n and m, multiply them and integrate

from 0 to l, the length of the string then it is l over 2 the Kronecker Delta m n. So which means if

m is not equal to n this is 0, if m equal to n this is l / 2. So, these are orthogonal, so Sin Phi x

over l  is orthogonal  to Sin 2 Phi x over l etc.  So if  I make graphical  representation of this

solution, I can think about it with the slide stretch of imagination. 

Suppose I draw axis which are orthogonal to represent this orthogonality conditions and I call it

Sin Phi x over l, call this axis as Sin 2 Phi x over l etc. I cannot draw all these infinitely many

axis, but I appeal to your imagination that you can consider this to be an infinite dimensional

space, where axis are orthogonal to represent the orthogonality of these functions.

And then a solution of this form or a representation in this form for a particular shape of the

string is actually a point in this infinite dimensional space, this is a1, this is a2, this is a3 and like



this you can have all these coefficients a1, a2, a3, a4 up to ‘a’ infinity. So in this space the

configuration of the string at a time instant, at a particular time instant is nothing but a point in

this, in final dimensional space. 

So as the string moves, so it is nothing but the motion of this point. So if the string executes a

periodic motion in this space, then it would be a perfectly closed curve. Now in this space then

what is the simplest motion that is possible, so the simplest motion would be for example the

string moving only along this axis, only along this axis, this is a modal solution, the motion of

the string in the first mood of vibration. 

So this motion is nothing but only Sin Phi x over l, is represented by Sin Phi x over l. All the

other coefficients are 0 a2, a3 etc. are all 0 except a1. So this is the first mode of vibration of the

string which looks like. Similarly, if you consider motion only along the second axis, Sin 2 Phi x

over l, then the motion of the string looks like this. 

So,  essentially  the  string  is  vibrating  between  these  two  extreme  configurations  and  the

corresponding frequencies, corresponding circular natural frequencies are given by these values

Omega 1 as Phi c over l and Omega 2 as 2 Phi c over l.  This infinite dimensional space is

sometimes called the modal space or sometimes also can be called the configuration space of the

string. 

So in this space, as the configuration of a string at any time instant is represented by a point and

it is nothing but when it moves from one configuration to the other is nothing but the motion of

this point, in this space and we have seen that the elemental motion or the motion along these

axis they represent the Modal solution. Now, I am going to demonstrate with a small experiment

these solutions.

Before that let me just state, point out here that as you can see in this solution there is no node

within the domain of the string, whereas here there is one node, where the string remains fixed.

This point is not moving out from the equilibrium position, whereas other points are vibrating.

Here  all  points  are  vibrating  in  the  same phase,  show the  string  essentially  moves  through



intermediate  configurations  like  this  and  then  again  comes  back  and  passes  through  the

equilibrium points.

So at the equilibrium point the string again become straight and then starts moving down and

reaches this extreme again, repeats, starts fresh. Here the intermediate configurations look like

this. So you see a point here and a point here, they are simply out of phase, so when this is

moving up, this is moving down and vice versa. So, but two points in this loop they are moving

in phase.

So the phase is either 0, phase difference between two points of the string is either 0 or it is Phi.

So, now I will demonstrate using a small experiment, these modes.
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So, here I have a string, which I have made taut by pulling and here there is an exciter, which is

nothing but a simple electric shaver. Now as I pluck the string you see the motion ceases after

sometime. This is expected since all real systems they have internal damping but in our model

that we have considered till now we cannot have damping. So to cancel the effect of damping, I

must have an exciter, which must pump the same amount of energy that is being dissipated due

to the internal damping in the string.



Now let us see, so this is the first mode of vibration of the string. This is how it will look like

when it is vibrating in the first mode. Now let me try the second mode.
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So this is the second mode of vibration of the string and I may also try the third mode which may

not be visible very clearly, because the amplitudes are so small. But the second mode is quite

clear and the first mode as well. So, this is what we have observed we have seen the first two

modes quite clearly, third mode because the amplitudes are so small has been less visible and so

on for the higher modes. But then, whenever, I pluck a string I actually excite a number of these

modes. 

So the motion of the string if I pluck a string or at an arbitrary point, then I am actually exciting a

number of these modes, so the solution is more complicated. But I can by special means excite

only these individual modes and we have seen that in a demonstration.
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The next example that we are going to look at is that of a Uniform hanging chain. We have

derived the equation of motion of uniform hanging chain previously and it looks like. So this is

the equation of motion, this is the boundary condition at the fixed end. Now, once again we are

going to attempt a solution with this structure and we obtain with the boundary conditions. Now

in the case of a string of a uniform taut string.

We obtained the  equation  previously  after  substituting  the  solution  structure;  we obtained  a

differential  equation  and  boundary  conditions.  Here  again  we  have  obtained  a  differential

equation and boundary conditions. This problem is known as the Eigen value problem. So in the

case  of  a  string,  this  was  our  Eigen  value  problem.  Now  this  structure  of  equation  looks

tantalizingly familiar.

Because  we  have  studied  equations  of  this  structure  when  we  discussed  Sturm-Liouville

problems in mathematics. Now to convert this because this is a particular, I mean this structure is

very  special,  we can  convert  this  into  a  more  familiar  form by using transformation  of  the

independent variable x, so let us consider a variable s which is a function of x. If you use this,

new variable ‘s’, then you can replace which you can check very easily, where W Tilde is a

function of this new variable ‘s’ and similarly you can work out the higher derivative.
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Now having done this, if you substitute back in the equation and convert this equation in terms of

‘s’ then what you obtain is with the boundary conditions, this can be checked very easily. Now

this is a very familiar equation, which is the Bessel differential equation. So this equation is the

Bessel  differential  equation  and  in  this  equation,  if  you  put  n  as  0  then  it  reduces  to  this

differential equation.

And the solution of the Bessel differential equation with n equal to 0, which is the solution for

our W Tilde, where J 0 and Y 0, they are known as 0th order Bessel function of the first and

second kinds respectively. Now, if you look at these Bessel functions of 0th order, then you will

find  that  this  second  kind has  a  logarithmic  singularity  at  ‘s’ equal  to  0.  So,  if  I  make  an

approximate plot of J 0, so at ‘s’ equal to 0, y is - infinity. 

So, this will violate this condition, this boundary condition, which is the boundary condition at

the free end. So finiteness of the solution at the free end forces us to select E as 0, so E must be

0. So therefore which can be written, so I can write this down in terms of my original variable x,

but before I do that, let me look at the boundary conditions, so we know that, so this implies this

must be zero. 

Now you can see from this figure there are discrete points but infinitely many at which this

function J 0 is 0. So these countably infinitely many solutions of this, will give us the natural



frequency of the system and if I represent this by something like Gamma k, then this Gamma 1 is

approximately 2.4048, Gamma 2 is 5.5201, Gamma 3 is 8.6537 and like this you can find out the

values and from here, from these values of Gamma k therefore you can find out say for example

we can easily write Omega 1 as 1.2024 under root l over g. 

So, you can see that compared to a mathematical pendulum, this is 1.2 times higher.
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Now  finally  once  you  have  this,  you  can  write  the  general  solution  once  again,  using

superposition. So these are the, these represent the modes, these are the Eigen functions and the

modes of vibration of a uniform hanging string are defined by these Eigen functions. So the

modes of vibration of a hanging string are defined by these Eigen functions and they look. So

this is the first mode, this is the second mode and this represents the third mode. 

Now once again I will demonstrate to you the modes of vibration of a hanging chain. So if you

see this chain, so this is the first mode of vibration, now we will try the second mode, so this is

the second mode of vibration of the chain. Exciting the higher modes is little more difficult. So in

this lecture, what we have studied is the modal analysis of continuous systems, so we started off

with the modal analysis of a taut string.



And then we looked at the properties of these model solutions and finally we also looked at the

example of a uniform hanging chain. So with this we come to an end of this lecture.


