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Lecture - 04
Variational Formulation - I

In  this  lecture,  we are  going  to  initiate  some discussions  on  an  alternate  formulation  of

dynamics of continuous systems.
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This formulation is known as the variational formulation. Before we get into this variational

formulation,  we  have  to  understand  a  few  concepts  based  on  which  this  variational

formulation  has  been made.  So this  concept  is  of  configuration  space.  Now what  is  this

configuration space? Let us picture a string, A taut string, which has been displaced from its

equilibrium position which is the x axis.

Now suppose I want to represent or track the configuration of this string. So the simplest

thing that I can think of is track certain particles on this on material points on this string. So

here for example I have 7 points so let me call them as the displacement corresponding to

these points as W1, W2, W3 etcetera up to W7. Now to visualize this configuration of the

strength at this instance I can think of an equilibrium like space. 

Here what I have done is I have taken three acces and that is the best thing I can draw W1,

W2, W3 and then there are acces like this up to W7. So here I cannot draw a space like this



with 7 access, but I will appeal to your imagination that you think of a space in which there

are 7 such access and then mark on this access the displacement of each of these points. Say

for example W1 is 0, W2 has a certain displacement, W3 has a certain displacement.

So  like  this  in  this  space  which  is  now a  7  dimensional  space.  There  is  a  point  which

represents this configuration. So in such a space a point represents a configuration so this

point, for example, represents this configuration of the string, but suppose now this string is

actually like this. Then also I mean these 7 points have the same locations I have drawn this

red configuration of the string very carefully.

So that this point in a 7 dimensional space is the configuration of the string, but we can see

from  this  figure  that  it  is  not  exactly  the  same  as  the  previous  configuration  the  blue

configuration. So what do we do? So we increase the number of points and like this if you go

on increasing the number of points to capture more and more configurations or infinitely

many possible configurations. 

Finally, what you come to is an infinite dimensional space which can track the configuration

of the string. So finally we have we require an infinite dimensional space to represent all

possible configurations of the string. Then as you can see such infinite possibilities therefore

if you want to represent them we require what are known as field variables and that is what

we have been using till now. 

So W the transverse displacement  of the string from the equilibrium position is therefore

represented as the field variable which can capture all this infinite possible configurations of

the string. So this space in which a point represents any configuration of the string is known

as the configuration space of the string. So therefore you can clearly see that for a string and

for any continuous system the dimension of the configuration space is infinity. 

So  such  systems  continuous  systems  are  represented  as  points  an  infinite  dimensional

configuration space and the number of coordinates of the configuration space represents the

degree of freedom of the system. So the degree of freedom of a string or any continuous

system is  infinity.  What  is  very  important  now to  move  on  is  to  remember  that  in  the

configuration space any configuration of a continuos system is represented by a single point. 



So therefore as the string vibrates as it moves through configurations there are trajectories in

this configuration space through which the string is going to move.
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So with  this  basic  definition  let  us  look  at  the  variational  formulation  of  dynamics.  So

imagine an infinite dimensional configuration space and a time T1 I observe the configuration

of the system is represented by this point T equal to T1. So this is this point in the infinite

dimensional configuration space represents the configuration of the string let say at time T

equal to T1 which may for example look like this.

Now so this is I have observed this is the configuration of the string that I have observed that

time T equal to T1. Now suppose I close my eyes and allow this string to move and suppose

at time T equal to T2 it attains a configuration like this. So this was the configuration at time

T equal to T1 the black configuration is the configuration of the string at time T equal to T2.

So at time T equal to T2 I have opened my eyes and I observe the configuration of the string

over this which is another point in the configuration space of the string.

Now the question is how did the string move from this configuration at time T time equal to

T1 to this configuration at time T equal to T2. Well it could have moved in this manner or it

could have moved in this manner or may be this. The question is can I say which path did the

string  follow in  the  configuration  space  so  this  is  our  question.  So is  there  is  a  way of

knowing because I have not seen how it has evolved from this state to this state.

Is there a way of knowing which path it followed? So this question is answered by something



known as the Hamilton principle. So what is this Hamilton principles? So what Hamilton

principle says is that of all these infinitely many available path for the system to move from

the configuration at time T equal to T1 to another configuration at time T equal to T2. The

one the system follows will extremize the action which is defined as an integral from T1 to

T2 of a scalar known as the Lagrangian which is again defined as a difference of the kinetic

and potential energies of the system.

So we again to reiterate we have observed two configuration of the string and we have not

observed the intermediate configuration how it went from configuration 1 to configuration 2,

but  this  principle  says that  the path taken by the string of the configuration  intermediate

configuration  attained  by  the  string  in  moving  from  configuration  1  to  configuration  2

extremizes the action which is defined in this manner.

Now what  is  this  extremization?  So extremization  has  a  connotation  of  minimization  or

maximization, but in mechanical systems such as a string or a bar this is the connotation of

extremization  which  is  actually  minimization.  Now  let  us  see  what  is  meant  by  this

extremization. Now the thing that has to be understood is this we are talking in terms of paths

in the configuration space.

So this action is a function of this path which is a function of time. So this action given the

motion  of  the  string  or  given  the  path  taken  by  the  string  from  configuration  1  to

configuration 2 which is a function of time we have defined this action as an integral over the

scaler function which is defined in terms of those paths such a thing is called a functional. So

it is a function of a function so this action is a function of a function.

So we have to minimize over functions. We have to find a function which minimizes the

action. Now this is slightly different from something we talk about in minimization of only

functions.
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So let us see. So suppose we have a function F of X, how do you find out the extremum

points, so these are extremum points. So what we say is that suppose X* is an extremum

point in this case the maxima. Then how do we detect that this is a maxima or how do we

detect  this  point  an extremum point.  So we make a test.  So let  us suppose that  X* is  a

solution of an extremum point let us make this test.

We disturb or perturb this point this X* by a small amount. Here I have written this small

amount as epsilon times Y where epsilon maybe a small quantity. Now if I compare take this

difference  divided  by  epsilon  the  and  take  the  limit  epsilon  tends  to  0.  For  arbitrary

perturbations Y. And if this turns out to be 0 then we say we have found an extremum. So if

you I mean this is the standard definition, this is in terms of the derivative.

This is what we do, but remember this X is a variable. Now suppose we want to draw an

analogy from here to understand what is Hamilton’s principles. So let me draw an analogy.

So here by the way this formulation I mean this way of doing things will work even if x is a

vector. If x is a vector, then let us see what happens. If you Taylor expand, then the first term.

So this is the first terms there will be further terms. So finally those terms have epsilon so

when you take this limit they will vanish. So this is what we will get and now as I said that

this  should  vanish  for  arbitrary  perturbations  Y.  So  if  this  is  to  vanish  for  arbitrary

perturbations Y then we must have this should vanish for all.
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Now let me extend this to understand Hamilton’s principles. So let me make a rough analogy

I mean this I mean definitely cannot be representation of a Hamilton’s principle perse, but

with a little abuse of this notations let me imagine that this action has been calculated for

different functions. So on this X axis now I have different functions. So a point here is a

function and for which I am going to calculate A. 

So let us just imagine for a moment that this is what our calculations result. So if I had to find

out the extremum points then I must calculate this action and I want to understand in the

similar manner what is this extremization. So suppose W* is the actual path taken by the

string as it moves from configuration 1 to configuration 2. So this I can perturb with another

function eta and small quantity of epsilon and take the difference divided by epsilon take the

limit epsilon goes to 0.

And if this turns out to be 0 then I say I have found a path that the string has taken to move

from configuration 1 to configuration 2. Remember this  action has been calculated as an

integral from T1 to T2 of the Lagrangian. Now this is represented in this manner just as in the

case of functions we say del F, del X vanishes here we write delta of the action is equal to 0.

So this therefore implies this condition.

And this is what we will use in this formulation. Now what is this delta? Delta is known as

the variation operator. It is very similar to total derivative operator except that it does not

differentiate time so time is frozen. So when this operator is applied it is assumed that time

has been frozen. All  this  thing can be understood if  this  limit  that  we have calculated is



analyzed.

So what we are looking is paths. So we will be perturb being paths. So time will be help

frozen and paths will  be perturbed.  So this  variation  operator  it  is  like a total  derivative

operator with time frozen. The second property of this operator that we will assume is that

this operator commutes with partial derivatives which is to say so suppose you have partial

derivative of W with respect of X and you operate delta over this.

And this can be written as so now an annotation we will be writing and similarly.
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Now let us go over to some examples and see the application of Hamilton’s principles. So

here we have a string whose transverse displacement is represented by this field variable W.

We assume that this string is made of a material of density rho area of cross section A and is

under a attention T has a link L. This is the first thing that we need to write is the Lagrangian

and construct the action integral and on which we will apply this variational formulation or

Hamilton’s principles.

So what is the kinetic energy of this string? So if I consider a small element of this string at a

certain location X then the mass of this little element rho A, D, X where D, X is the length of

this  element.  Now with this  I  multiply  the velocity  square of  this  little  element  and if  I

integrate this over 0 to L and multiply by half then I obtain the kinetic energy of the string.

When I write del W, del T. So W, T, whole square.



So this is assumed that it is like this so that is the kinetic energy of the string. Now we have to

write the potential energy. Now to write the potential energy let us look at the string and

infinite decimal portion of the string as it goes. So this is the equilibrium configuration. So

the length at the equilibrium configuration was D, X after it has been displaced its length

changes to D, S.

Now this change in length is taking place under a tension T which we have assumed not to

change with this placement. This was one of the assumptions of our model. So tension of

course actually changes, but then that change is assumed to be negligible. There is no actual

force on the string. So what is this length of, this deformed length of the string. So this is the

traverse displacement at X and this whole thing is W, X plus D, X at time T.

So this length can be written as which maybe represented in this manner. So let us look at the

work done by this tension as the string stretches. So tension which is almost constant times D,

S minus D, X. Now I integrate this over the length of the string. So that should give me the

work done and which is stored as potential energy in the string. So this now I expand this

assuming that Del W, Del X is small which we have assumed.

So then this turns out to be so this will be 1 plus half Del W, Del X whole square so that one

cancels off. So here I am left with only this term. So that is my expression of potential energy

of the string.
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Now let look at the variational principle. So what Hamilton’s principle says so let me first



write so this is a statement of Hamilton’s principle so which now can be written as this and I

can simplify this further in this manner. Now I am going to apply this variation operator on

the integral to obtain so Del W, Del T whole square when I operate that will give me two

times Del W, Del T delta of Del W, Del T. Now this two will cancel with this half this two in

the denominator.

So  I  am writing  out  the  expression  after  such  a  simplification.  Now this  here  as  I  had

mentioned that this variation operator can commute with this time derivative and here the

space derivative and this delta W is the small perturbation on the function W. Now since we

want to separate out this small perturbation arbitrary perturbation, arbitrary variation over W

I would like to have something in terms of delta W.

Now to obtain that  I  integrate  by parts  these terms this  will  be integrated  by parts  with

respective to time and this will be integrated by parts with respect to spatial coordinate x. So

if I do that and I assume that this integral will commute then I can write so I will take this as

the first function and here this is nothing, but these expressions. So first function time integral

of the second function.

So this is the first part obtained from this term in the integrant. Similarly, this is going to give

me this has to be integrated by parts over space so my time integral will remain. So first

function in the special integral of the second function. Now minus the time derivative of this

and once again the integral and in the same manner. Now if you look here this variation over

the configuration have two-time instance.

This  variation  has  to  be  calculated  at  two-time  instance.  Now  if  you  remember  the

formulation of the problem in the first place I know the configuration of the string at these

two-time  instance  so  there  cannot  be  any  variation  I  am  not  trying  to  vary  these  two

configurations which are at time T equal to T1 and time T equal to T2. So I am not looking at

variations  of  the  initial  and  final  configurations,  but  I  am  looking  at  variations  at  the

intermediate times. So this variation must vanish. So here I finally have this.

Now the first term in this integral if you see the variation is at the boundaries delta W and all

this terms will have to be evaluated at the boundaries, but here they are at the intermediate

positions  of  the  string.  Now these  two  can  be  independently  done  so  you can  hold  the



variation over the string as fix and just vary the boundary or vice versa. So therefore if this

has to vanish if this total expression has to vanish for arbitrary variations delta W.

Then I must have this integrant here in this square brackets must vanish. So this must be 0

which gives us the equation of motion as we can easily recognize now.
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And this must vanish at the two boundaries. Now what this says is that I mean this can vanish

in two ways say F equal to 0 let us look at X equal 0. This can vanish if delta W vanishes

which means that W is fixed and for all times it maybe 0 or this may vanish at X equal 0 if

system is equal to 0. Similarly, that X equal to L this can vanish if W at L is fixed or this term

is O at X equal to L.

Now since this has being evaluated at X equal to 0 and X equal to L and both terms now must

vanish. So both these things so either this equal to 0 and or this equal 0 or this equal to 0 and

this equal to O. So various combinations are possible at the two boundaries and you can now

easily recognize that this condition on 0 displacement which is like a fixed end is a geometric

boundary condition whereas this is a forced condition.

And same thing here. So what are the various possibilities? Possibilities are both ends of the

string are fixed or one end is fixed or one end is sliding or both ends may be sliding. So what

we find here is that not only we get the equation of motion, but we also obtain all the possible

boundary  conditions.  So  when  we  use  the  variational  formulation  of  the  string  or  any

continuos system not only we get the equation of motion, but we also get possible boundary



conditions.

Now this is an extremely powerful method for formulating the equation of motion of very

complicated systems. Now this is not this variational formulation is not just an approach for

finding out equations and boundary conditions, it also as we will see later a method which

will  help us or lead to numerical methods for computational  purposes and very powerful

methods have been based on this variational principles.

So to summarize what we have discussed in today’s lecture the variational formulation of

dynamics of the continues systems and we have looked at the Hamilton’s principles which

forms the basis of this formulation and before that we have looked at what a configuration

space of the continues system based on this Hamilton’s principles works then we are finally

taken an example of a string and derived its equation of motion and also obtained the possible

boundary condition for the string. So we end the lecture here and we will continue further. 


