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Lecture - 32
Vibrations of Rectangular Plates

Today, we are going to discuss the vibrations of rectangular plates. So in the last lecture, we

had seen the mathematical modelling of plate vibrations under small transfers displacements.

So today we are going to look at the vibrations of rectangular plates.
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So let us recall that the equation of motion for a Kirchhoff plate. So this is the Kirchhoff plate

model where the nabla 4 is square of the Laplacian that turn out to be this form and D is in

terms of the Young's modulus E, thickness cube, thickness of the plate h cube divided by, the

nu is the personal ratio. So here of course rho is the density of the material of the plate. So

this is a Kirchhoff plate model for plate with constant thickness. 

Now along with this we will have of course the boundary conditions, which we will look at as

we proceed. So we are interested in the modal analysis, so we will be looking for solutions.

So we are looking for solutions for rectangular plates, so this is in the Cartesian coordinate.

So we look for separable solutions, space time separable in this form. So suppose we have a

plate lying in the xy plane and the displacement.



The field variable w is measured in the transfers to this plane, which means perpendicular to

the plane of the paper. So if you substitute this solution form in the equation of motion, so we

can write this as, and we will make redefinition of, so we will rewrite this as, where we have

defined this gamma as omega square rho times the thickness divided by this constant D. So

this is our differential equation of the Eigenvalue problem. 

So the  complete  Eigenvalue  problem description  will  also  have  the  boundary  conditions

along with this differential equation. So let us look at this differential equation first.
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So we have, I can write this as, this operator in the equation of motion. So I can write this as

nabla  power four  minus gamma power four  operating  on W and that  is  zero.  And I  can

factorize this, in this form. Now these two operators they commute, so this can operate first

or  this  can operate  first,  that  does  not  matter  in  which order. So then,  if  I  consider  two

functions such that this operator operating on W1 is zero, and W2 is such that.

So these two functions satisfy these differential equations. Then I can say that the solution W

can be written as a combination of W1 and W2. So this can be very easily checked that you

can, if you construct a solution like this, then this is going to satisfy our original differential

equation of the Eigenvalue problem. Now but this, it so happens this is as we will discover

very soon that this is not the most general solution structure that is possible. 

So this solution is valid or good for a class of problems. So class of problems, by class of

problems I would, I mean the class of boundary conditions. So this structure can be used to



satisfy  a  class  of  boundary  conditions.  Now, then  let  us  look  at,  then  let  us  search  for

solutions of this class, then we have to look one by one at these two differential equations. So

let us first take this differential equation which.
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So this differential equation, now this differential equation is also known as the Helmholtz

equation, which we have come across when we discuss dynamics of membranes. So when we

studied the Eigenvalue problem for membranes, then we have encountered this differential

equation.  And the solution,  you can recall  is in this form. So the general solution of this

differential equation is, so that is the general solution of the Helmholtz equation. 

Now where this alpha and beta, they satisfy the condition that alpha square plus beta square

must be equal to this gamma square. So this we have already discussed, now let us look at the

other  differential  equation.  So this  nabla  square,  the  Laplacian  minus  gamma square,  so

operating  on W2 is  zero.  So then let  us look for  solutions  with the  structure,  which are

separable in x and y. 

So if you substitute this solution form here, then we can write, so let be indicate this by dot.

So what I have used is, this is a del x, ddx and dot indicates ddy. So if I divide this equation

throughout by xy, then, so I have this structure of the equation. Now you see that this term is

solely a function of X, this term is only a function of Y, and this is a constant. So orbitary xy

if this equation has to be satisfied, then each of them must be constants. 



So that would imply, let me indicate this constant by alpha bar square. So and Y, this constant

by beta bar square. So in that case what I have is alpha bar square plus beta bar square must

be gamma square. So now let us look at these differential equations for capital X and capital

Y.
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So these  differential  equations  they  read  double  derivative  of  capital  X minus  alpha  bar

square X must be zero and we know that the solution of this differential equation may be

written as, so let me write this as the first term, as the sin hyperbolic. Similarly, from the

second equation, so the solution of this can be written as C3 sin hyperbolic beta bar y plus C4

cos hyperbolic beta bar y.

And of course this with the condition that alpha bar square plus beta bar square is equal to

gamma bar square, gamma square. Now then, let me write down the solution so far, so our W

is W1 plus W2 therefore we have all these terms. Now you see the actual solution of W2, so

W2 is X multiplied by Y. So now this product I can write therefore product f say C1, C3, if I

write as A5, then this is A5 sin hyperbolic alpha bar into sin hyperbolic beta bar y.

Now you can see here that we have product of the trigonometric functions in xy direction and

product of hyperbolic functions separately again in xy directions. In this class of solutions,

there is no product of trigonometric and the hyperbolic functions. So this we can, I mean we

can intrudively have an idea that  this  is  not  general  enough. So, but this  solution this  is

nevertheless a solution, which can solve class of problems. 



So this, you can use this solution for a class of boundary conditions.
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So let us look at certain example, so the first example that we are going to take is that of a

simply  supported.  So  let  us  consider  a  plate,  which  is  simply  supported  on  all  four

boundaries. So let us consider this as a and this as b, so the boundary conditions for this plate

we have seen, discussed in the last lecture. So the boundary conditions, so at x equal to zero

which means this edge and x equal to a means this edge.

We have the displacement zero and since they are simply supported the movements are also

zero and the movements in this case happen to be the double derivative of w with respect to

x. Similarly, at these two edges the displacement at y equal to zero and y is equal to b, so

these two edges, the displacement again equal to zero and the bending movements are also

zero. So these are the boundary conditions for the simply supported plate.

Now the corresponding boundary conditions of the Eigenvalue problem, so they can be easily

determined from here,  so W, so these are  the corresponding boundary conditions  for the

Eigenvalue problem. Now let us look at the solution and these boundary conditions. So this

was our general solution and these are our boundary conditions. So suppose when x equals

zero so these terms will vanish, so we are left with these four terms.

Similarly, when you take double derivative with respect to x and look at x equal to zero, so

again you will find that those terms will vanish. Similarly, when you consider y equal to zero,

the displacement and the curvature so double derivate with respective to y, so if you look at



all these conditions that you obtain, then finally using these conditions you will come to the

conclusion that this the solution will boil down to.
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Now here we have used the conditions for x equal to zero, the displacement and the double

derivative of the displacement and again at y equal to zero the displacement and the double

derivative of the displacement. So we have some further boundary conditions, which we must

satisfy with this equation. So then if you use those condition, then the remaining boundary

conditions.

So if you use the remaining boundary conditions, then you will obtain these conditions. So

for example when you use W at x equal to a, equals zero, so sin of alpha a for all y must be

zero and when you take the double derivative with respect to x again you will get sin of alpha

a equal to zero. So then you have this condition, and you have another condition similarly sin

beta b must be equal to zero. 

So this is for W at y equal to b and W dot at y equal to b vanishing. So that will give us this

condition, so the first condition implies that alpha, now this gets indexed, because there are

countably infinitely many solutions of this equations. So alpha m times a equals to m Pi and

from here, another index, so m and n can have values from one to infinity. 

So if you recall the definition of the condition or the constraint on this alpha and beta, that

must be equals to gamma square and, if you look back, then this gamma square. So you have

this gamma was defined as, so this gamma had this omega square. Now this gamma also gets



indexed because of this m and n. So then omega also indexed as m and n. So omega mn, if I

now use these expressions of alpha m and beta n, so this is m Pi over a and, so that is what we

are going to obtain as, so this is omega mn square is given by this. 

Now so we obtain  the  circular  natural  frequencies  of  the plate  and using and the Eigen

functions are obtained from here, they also get indexed, so these are the Eigen functions.
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Now you can quickly see that these Eigen functions satisfy the orthogonality conditions. So

that is ab over four, these are the chronical delta functions. So they take the value when the

two indices are equal. So these Eigen functions they are orthogonal and the general solution,

we can write down the general solution of the plate using these Eigen functions, we have

converted this to an amplitude and phase form the temporal function.

So we can have this general function, now let us look once again at these Eigen functions. So

these are, we have obtained these Eigen functions even for membranes and the modes look

very, the modes of vibration are the same. So for the simply supported plate and that of the

membrane. Now let us look at another example of the plate, with mixed kind of support, sp

on two edges we consider simply supported edges. 

And the  other  two opposite  edges  we will  consider  as  clamped.  So let  us  consider  this

membrane, this plate.
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So in the x direction the length is a and here it is b again. Now we will assume that this side

simply supported and these two sides are clamped, so these two are clamped, and these two

edges are simply supported. So the boundary conditions for such a plate with such a boundary

condition. So the mathematical representations are the displacement at x equal to zero and x

equal to a they must be zero.

The moment, these also must be zero at the simply supported edges, for the clamped edges

we have the displacement at y equal to zero and b as zero and we have the slopes at these two

edges as zero. So corresponding to these boundary conditions, the boundary condition for the

Eigenvalue problem. Now if you look at these boundary conditions, and also look at, so these

are our boundary conditions now.

And the kind of solution that we had here so, if you now use these boundary conditions for

this  solution,  then  you  will  find  that  this  solution  can  not  satisfy  this  set  of  boundary

conditions,  that  can  be checked.  You have here  at  y  equal  to  zero and once with single

derivative of y. So because of this structure being a little special, these boundary conditions

cannot be satisfied by this class of solutions now.

So we have  to  start  a  fresh for  this  set  of  boundary  conditions,  we have  to  look at  the

Eigenvalue problem a fresh.
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So let us look at, so this was the differential equation of the Eigenvalue problem. Now here

we have simply supported edges at x equal to zero and x equal to a. So let us try a solution

which  already  satisfies  these  two  boundary  conditions  at  x  equal  to  zero  and  a,  the

displacement and the movements being zero. And we know this that sin m Pi x over a is a

functions which satisfies these four boundary conditions, two on each edge.

For the y coordinate, let us have this function unknown function as yet unknown, capital Y,

which is the function of the y coordinate. Let us try the solution in the differential equation of

the Eigenvalue problem. So if you substitute this in here and make some simplifications, then

so this is what you are going to get. Now we can try a solution for this, let us say so if you try

a solution like this, then p will have as you can see that this differential equation.

So this will reduce to. This can be decomposed as, that implies that must be zero. So we have

two solutions of p.
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Let me name this solutions of p as let say alpha, so p1 is alpha equals, so let me consider this

gamma  square  plus  and  p2  I  call  that  beta.  So  we  have  these  two  solutions,  so

correspondingly we can write y as, so if you define this beta in this form and alpha in this

form, then I can write the solution, so because of this definition of beta which is, you have

both real and imaginary solutions for p.

And by defining p2 in this form I can write this in terms of trigonometric functions. So then

my solution  stands  as,  now we have satisfied  four  boundary  conditions  by  choosing the

function in x, we are left with these four boundary conditions as yet. Now if you substitute in

this  solution  from  in  these  boundary  conditions,  finally  you  will  get  the  characteristic

equation, so for non-trivial solutions of C1, C2, C3, C4, so this is our characteristic equation.

So if you solve this equation numerically, and you already have the relation between gamma

and the frequencies so you can find out the natural frequency. Now this, I have written out the

first three modes and if you look at this definition, so this is also square. So gamma power

four is, so from here you can determine the natural frequencies.
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Now this figure shows the first three modes of vibration of this plate. So in the first mode

there are no nodal lines where as the second and third they have these nodal lines. Now here

you can see these two are the clamped edges, so the slopes are zero where as these are simply

supported edges.

So to recapitulate, we have today discussed the vibrations of rectangular plates and we have

seen that the solution is, I mean determining the solution is little complex, we have looked at

two kinds of boundary conditions, or two classes of boundary conditions and we have solved

these problems. And determined the Eigen frequencies and the modes of vibration. So with

that I conclude this lecture.


