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Lecture - 31
Dynamics of Plates

We are going to discuss the dynamics of plates. So we will be in the next few lectures we are

going to actually  discuss the vibrations of plates.  So today we are going to initiate some

discussion on the modelling of plates. Now what is a plate? So we have seen that a membrane

is a two dimensional continuum which does not transmit any bending moment. Now when

you think of a plate it does transmit bending moment or it does resist bending.

So which means a plate is a two dimensional elastic continuum which resists or transmits

bending moment. So first where do we find plates. So plates are found in various machines in

civil structures etcetera. So we are interested in first the dynamic model. We are interested in

setting up the equations of motion or modelling the dynamics of plates. So as it happens with

any dynamic modelling we make some simplifying assumptions.

So that we can have two dimensional theories for plates so for continuum two dimensions. So

what assumptions do we make to simplify our models. 

(Refer Slide Time: 02:03)

So the first thing that we assume that there is a plane or there are fibers which are unstressed

these are called neutral fibers. So we assume the presence of neutral fibers which occurs if



you do not have in-plane forces in the plate. So the plate is not subjected to any in-plane

forces then you have when the plate undergoes transverse small transverse vibrations then

there are fibers which remain unstrained.

The second assumption we make is that there is no shear deformation. So this is known as

Kirchoff  hypothesis.  So  this  corresponds  to  the  Euler-Bernoulli  hypothesis.  The  third

assumption we make to keep our model linear is that the slopes are small. So when the plate

deflects the slope because of this transverse deflection they are small. So we are going to

model under these assumptions.
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So let us first look at so let us consider a plate and we look at a little element in this plate. So

what  are  the  stresses  on  this  element?  We will  make  further  assumption  that  the  plate

thickness is constant. So this plate is line in the XY plane and its deflection is transverse to

this plane. Now we consider that the stresses that are acting are the normal stresses so we

have stresses sigma XX sigma YY this is a normal stresses and we have shear stresses.

So sigma XY sigma XZ and sigma YZ. So I am showing the stresses only on these two

surfaces. Now there can be a distributed force on the plate, but at present we are going to

drop that. So essentially we have only these stresses which are non 0. Now when we want to

construct a theory in two dimensions then we integrate over the thickness of the plate. We

integrate over the thickness of the plate.
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And we define what are known as the stress resultant the force and moment resultants. They

are also known as the stress resultant. So the stress resultant due to the normal stresses. So

these are because of normal stresses and this is because of the shear stress so this is in-plane

and then we have out of plane shear stresses which we denote by QX and QY and we have

the moment resultants because of the moments due to the normal and the shear stresses so

these are the in-plane.

So we have defined here as MX as Z time sigma XX, but actually this moment is along the Y

axis, but still we call it MX because it is the moment with sigma XX. Now these resultants

they have the units of force per unit length or moments per unit length.
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Now let us look at these force and moment resultants on the infinitesimal element. So this is



an infinitesimal element of the plate so I will mark out the resultants. So the first is NX so I

will show the so this phase at X = 0 there you have NX in along the negative X direction and

on this phase you have NX plus NX derivative with respect to X DX so this length is DX.

Similarly, this is DY. So this is the normal stress resultant on this phase.

Similarly, you have on this phase. Now the resultant because of the shear stress on this phase

is up on the other opposite phase it will be down that will be QX and this is QX plus Del QX

Del X DX. Similarly, here up this is QY plus and the in-plane shear stress resultant which is

NXY. So this of course is similarly this will be now on the other two phases you can imagine

that they will be without this additional part and they will be opposite in direction.

So these are force resultants now let us look at the moment resultants now. So here we have

now this moment in this direction on the normal to this phase. So this is the moment because

of the normal stress sigma XX so that is going to follow this right hand rule so this is the

moment on this phase and the phase X = 0 you have just MX in the opposite direction and on

this phase it is because of sigma YY so you have these as the moment resultants.
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Now we will come back to this figure again now let us write down the constitutive relation

for the material so these stresses are related to the strains. Now since we have considered that

the plate is infinitely stiff in shear there is no shear deformation of the element along the Z.

So  therefore  the  corresponding  stresses  actually  cannot  be  calculated  from any  material

constitutive relations we have to determine them from the equations of motion.



Now let us look at the geometry of deformation so that we can calculate the strain in terms of

deflection of the plates. So let us consider the plate initially undeformed represented by this

dashed curve that along the X axis and this deflects in this manner. So if this is a line which is

initially  along the  Z so it  is  vertical  then  this  line  deflects  to  this  configuration.  So the

displacement in the direction of X can be written approximately if you call that displacement

as U is minus Z times Del W Del X.

As you know Del W, Del X is stand of this angle so tan and for small theta this is also equal

to and that is equal to theta. So if Z is the location of this point from the neutral line, neutral

surface then the deflection in the direction of axis given by minus Z Del W, Del X. Similarly,

for the Y in the Y direction we can write now using this we can calculate the strain field so

that is a strain field. Now if you have this strains so this are linear in Z.

Now this W is independent of Z. So strain is linear in Z so epsilon XX and epsilon YY are

linear in Z so therefore sigma XX is also linear in Z as you can see from these expressions so

that will be linear in Z. So if you back to this calculation of the resultants if this is linear in Z

then Z integrated from minus H/22 plus H/2 is actually 0 so which means that these terms are

going to vanish so these are NX and Y and NXY they are of 0 so the non 0 resultants are Q

and M.
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So let us calculate then M because Q will ultimately come from the equations of motion so

the moment resultant theory called this is the expression. So if you substitute so use this

expression of the stress where these strains are written from here and if you substitute in this



expression and simplify then you can see that this leads to similarly so here D and of course

Nu is the Poisson’s ratio and E is the Young’s modulus.

So these are the moment resultant now we can write down the equations of motion. 
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So we write down the transverse equation of motion in the transverse direction, So if rho is

the density of the material and H is the thickness so this is mas per unit area times the area of

the little element times the accelerations. So if you now look at this figure so we have in the

transverse direction these forces Q. So here it is upward so here there will be a downward

which will be minus of QY in the equation of motion and since remember these are all forces

per unit length.

So this and from this the contribution is so these are the forces in the transverse direction.
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Now let us look at the rotational dynamics so for that we will refer to this figure. So I will

directly write so Del W, Del X is the small angle so this is the rotation about the Y axis so this

double derivative with respect to time will give us theta Y double dot. So rotation about the Y

so angular acceleration about the Y axis. So this equals so we have these moments so it is a

rotation about the Y axis we have for this moment then we have the moment this one because

of YX.

So let me write this then and because of this for QX you have another moment. So this is the

rotation about the Y similarly you can write down the rotational dynamics about the X axis

and this is the I is the moment of inertia per unit area. So for this element we have I equal to

row HQ over 12. So these two equations correspond to the rotational dynamics whereas this

equation  of  course I  will  divide  this  whole thing by DX, DY so this  corresponds to  the

traverse dynamics.

Now  I  am  going  to  eliminate  Q,  QX  and  QY in  the  transverse  dynamics  using  these

expressions. So if I do that so this is what I obtain now here I will replace these moments

using  the  expressions  that  you have  derived the  moment  resultants  in  terms  of  the  field

variable. So if you do that then you can simplify the equation this can be written as so the

Laplacian of Del square W Del T square plus D now this turns out to be so this is written as

so we can write this in a compact form.

So this is the equation of motion of the plates. So here Nabla 4 is the square of Laplacian.

Now we need to talk about the boundary conditions. So this model the way this is known as



the Kirchoff-Rayleigh Plate Model if you this is the Rotary Inertia term. This is because of

the bending and this is the inertia term. So if you drop rotary inertia term assuming that the

moment of inertia is very small in that case if you drop this term then you have Kirchoff Plate

Model.

So if you drop the rotary inertia term then you have Kirchoff Plate Model with the rotary

inertia term is called the Kirchoff-Rayleigh Plate Model.
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So  now,  we  discuss  about  the  boundary  conditions  so  we  can  have  various  kinds  of

boundaries. So suppose let us consider a clamped so suppose you have a plate and you have a

boundary here which is clamped boundary. So if the boundary is clamped so it is actually

quite simple then the displacement must be 0 and of course the slope must be 0. So these are

geometric boundary conditions then if you have simply supported edge at X equal A so we

have the displacement 0 and the moment equal to 0.

So this implies if you use the expression of the moment, but if the edge is simply supported

and is straight so that W is at X equal to A for all Y is 0 then there is no curvature so this term

is also 0 so this will imply now this is a natural boundary condition. Now we come to this

interesting  case  of  a  free  boundary  so  we  have  discussed  clamp  boundary  and  simply

supported boundary.
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Let us discuss the free boundary. So if a plate has a free boundary then intuitively we may

guess that so suppose this is X equal to A. So this boundary is at X equal to A. So intuitively

we might guess that so this shear stress resultant so this QX is going to be 0 so QX is along z

on this space so that should be 0. The moment = 0 and in addition we have another moment

because of the shear stresses in-plane stresses that also has to be put to 0.

But  you  see  this  differential  equation  of  the  plate  is  4th  order.  So  it  cannot  support  3

boundaries  conditions  at  an edge like this  and a boundary cannot  satisfy three boundary

conditions. So there must be something wrong about this these boundary conditions at least

some of them so there must be some combinations so now we are going to discuss how they

are actually combined. So let us see this MXY.

So let me refer to this figure once again so this was MXY on this phase let say at X equal to A

so this MXY. Now this is a moment because of the in-plane shear stress so this moment can

change  as  you move in the  Y direction.  So at  another  location  this  can  be  M.  So I  am

considering two locations separated by a small distance epsilon. So we are moving in the Y

direction so this is the moment at the location a distance epsilon along Y.

Now this can be equivalently represented as a couple so this can be replaced by a couple and

similarly this can be replaced by another couple. So therefore at this point you can imagine

that the force resultant here which is now a transverse force is given by so all these things are

calculated  at  X equal  to  A.  So this  is  an additional  edge  resultant  force which  is  in  the

transverse direction which is same as QX. So we can combine now this must be 0.



This is defined as the edge force this is known as the edge force. So this edge force must

vanish. So it is a combination of the force because of the out of plane shear stress and the

moment  because of  in-plane shear  stress.  So these two they combine  to give  us  what  is

known as the edge force. So we have the boundary conditions as this and this if you write this

down in terms of the field variable.

So and if you calculate this edge force so these are the boundary conditions for the free edge

at X equal to A. So let us summarize we have looked at the equation of motion of small

amplitude,  small  slope  vibrations  of  flat  plates.  So  plates  are  two  dimensional  elastic

continuum which can transmit or resist bending moment. So we have looked at the equation

of motion and the boundary conditions.

And we have for the standard boundary conditions which are the clamped and the simply

supported the boundary conditions are quite simple whereas for the free boundary we have

discuss  about  the  edge  force  that  must  vanish.  So  the  boundary  conditions  for  the  free

boundary have to be carefully determined. So with that I conclude this lecture.


