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So  today  we  are  going  to  look  at  2  examples  on  vibrations  of  one  dimensional  elastic

structures  that  we  have  started  with  strengths.  So  today  we  are  going  to  look  at  axial

vibrations  of  bars  and  torsional  vibrations  of  circular  bars.  So  let  us  begin  with  axial

vibrations of bars. So where do we finds bars in axial vibrations? So some examples are; in

an ultrasonic machine, so in an ultrasonic machine, what you have is a bar which is shape like

this, which is connected to an actuator.

So this bar is called a horn of the ultrasonic machine and this in ultrasonic generator which

passes  ultrasonic  waves  in  this  bar  and because  of  this  shape,  you have  large amplitude

motions at this work piece, so such a machine is used for machine in brittle materials, for

example.  Then you find bars in axial vibrations and Pneumatic hammers, sometimes also

known as jack hammers. 

So in a jack hammer, it looks roughly like this, so these are used for drilling or chipping

operations in construction sites. So here you have a bar, which is also in axial vibrations.

Then you have piezo actuators, sensors in which you find a bar, which made of piezo electric



material which is under axial vibrations. Then in various structural elements, you may find

bars in axial vibrations. 
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Now  in  order  to  model  the  dynamics  of  bars  in  axial  vibrations,  we  begin  with  some

assumptions that we make on this modelling. So the first assumption that we make is that all

points of the bar are in all points on a cross section, have same motion. So what I mean by

this is suppose you have a bar, at a certain cross section all points will have the same motion.

The second assumption is that we make is that the strains, the strain is small. 

So that we do not have nonlinear effects. We are going to discuss on the linear vibrations of

bars. The third assumption is that, there is no transverse motion of the bar. So this bar, the

material points are vibrating only along the axis of the bar. There is no transverse motions

and  the  fourth  assumption  are,  that  we  make  is  that  the  material  of  this  bar  is  linear,

homogenous and isotropic. 
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So with these 4 assumptions, we are going to now look into the equation of motion of a bar in

axial vibration. So let me draw a bar, so this bar is made of material of density, say rho as an

area of cross section A; which may be a function of the spatial coordinate x, has young's

modulus E and has the length l. Now at any location x of the bar, the displacement of cross

section in the axial direction is measured by this field variable u, as a function of x and time t.

Now  you  are  going  to  derive  the  equation  of  motion  of  this  bar  using  the  Newtonian

approach. So what we will do is, we will consider, an infinite decimal, a small section of this

bar as I have shown here and draw its free body diagram. So we will consider the stress, so

this element is of a line delta x, lies between x and x + delta x, so the stress on the right

phase, I will write as sigma, x + delta x, t and on the left phase, this sigma x, t. 

Let this area be A(x + delta x) and this is A(x). Now we are going to write the equation of

motion using Newton’s second law, for this infinite this small element. So the mass of this

little piece, may be written as rho times A is mass per unit length and the length of this little

element is delta x, so this is the mass of this element. This mass times the acceleration in the

longitudinal direction; that is the double derivative of the field variable u with respect to time.

That must be equal to the forces in the longitudinal direction. So the force on the right phase

is given by sigma times A on the right phase - the force on the left phase this has given by

sigma times A on the left phase. Now if I divide this whole equation by delta x and take the

limit, delta x time is 0, then that would imply, rho A times the acceleration equal to the partial

derivative of sigma * A.



Now we require to represent this stress in terms of the displacement, the field variable. So in

order to do that, we will need 2 things. The first is the material constitutive relation, which

will relate the stress with the strain so we know that the axial stress is proportional to the

strain and the proportionality constant is the Young’s modulus, so this is the Hooks law in one

dimension. Along with this, we need the strain displacement relation. 

So which means, epsilon the strain is del u del x. So if I substitute this expression in the

constitutive  relation  and  put  this  back  in  the  equation  of  motion,  what  I  obtained  on

rearrangement of terms, so is therefore the equation of motion for axial vibrations of a bar.

Now remember that this equation has been derived by considering a small element of the bar

that in no way tells us or describes to us the full physical picture of the bar.
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So what I am trying to get at is, we need to complete this description of this bar in an axial

vibrations,  we  need  the  boundary  conditions.  Now  as  we  have  discussed  before,  this

boundary conditions are of 2 types, geometric and natural. Now let us look at some examples

and identify the boundary conditions. So we begin with the uniform bar. So the equation of

motion in this case, simplifies to this equation, because the area is now constant, it  is no

longer function of x. 

So it can come out of the partial derivative and this can be simplified further to obtain this

equation of motion for a uniform bar. Now the boundary conditions of this bar, as you can

see, this end of the bar, is completely fixed at the wall, so at x=0, there cannot be any actual



motion of the bar. Now this boundary condition is fixed by the geometry of the problem, so

this is the geometric boundary condition. 

Now this end is free, free would mean that there is no axial force at this, on this phase of the

bar. Now force as you know, force here on any cross section is given by sigma times A, so at

x=l, the axial force must be 0. Now we have used the Hook’s law and the strain displacement

relation  previously  to  obtain  this  relation  between  the  displacement  and  the  stress,  so

therefore, these 2 will imply, E times A, del u del x, this computed or evaluated at x=l, must

be 0. 
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Since A is uniform, the boundary condition turns out to be this. Now this comes from a force

condition, such a boundary condition is a natural boundary condition, so we finally have the

equation  of  motion  of  a  uniform bar  and the  boundary  conditions,  which  completes  the

description of this fixed free bar in actual vibrations. Next we look at another example, so this

is a bar, at the end of which, this is a fixed free, this is a fixed bar at the end of which, an

oscillator is attached in this manner.

So this is a point mass attached with the spring of stiffness k. So the displacement of this

mass from the equilibrium position is measured by this coordinate y. So let us first write

down the equations of motion for this system, now here you have as you can see a bar and

this mass, so here are the field variable  which measures the displacement  of the bar, the

material points of the bar.



And we have this coordinate y, which measures the displacement of this mass, discrete mass

M. So the equation of motion of this bar remains the same as before, so you can write, now

for this oscillator which is connected at this end, we can easily write the equation of motion

as m, y.. + k times y is equals to k times the displacement of the bar at this end. This equation

can be easily derived.

If  you write  down,  if  you take  the  oscillator  separately  and write  down its  equation  on

motion. Now these are the equations of motion for this system so as you can see they are

coupled. Now let us look at the conditions of the boundary. So at this end of the bar, this

completely fixed, therefore, we can easily write the displacement is 0 at this end. On the other

hand, at this end of the bar, where this oscillator is attached.

We can expect an interaction force with the oscillator, from the oscillator. So we have already

written the force on any cross section as E times area, del u del x, at x=l, a time t, so that is

the force, at there been no oscillator, it would have been 0. Now since there is an oscillator

you can write the force that this absorber or this oscillator puts on this end, which is easily

obtained as k times y, which is the motion of this point – the displacement of the bar at this

end. So this is the boundary condition at this end of the bar.
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So here we have a geometric boundary condition whereas on the right end, we have a natural

boundary condition. So with these 2 examples, we will move on to the next example or the

next case that we are going to consider, which is torsional vibrations. So we are going to



consider the case of torsional vibrations of circular bars only. So, where do we find torsional

vibrations of bars?

So mostly in rotating machinery, so you have shafts in rotating machinery which transmit

torque  such as  subject  to;  subjected  to  torsional  vibrations.  For  examples  in  turbines,  in

rotors, in crankshafts; turbines, crankshafts of engines in the dentist drill, so in a dentist drill,

you have a wire which is under torsion. These are called drills strings, they are also found in

petroleum excavation and mining industries.

So these shafts, for example in a mine like this, so this is the drilling head and here you have

a shaft which transmits the torque to this drill head, this shaft is under torsional vibrations. It

also has some amount of transverse vibrations but the torsional vibrations are quiet dominant

in such situation, these are called drill strings. Si in such situations, you find shafts or circular

bars in torsional vibrations. 
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So once again for the mathematical model of such a bar, you make some assumptions, so the

first assumptions that we make is that the; we have already said that the bar is circular, so we

are going to study only torsional vibrations of circular bars that is to ensure that there is no

wrapping of the cross section. We will assume that the strains are small, so that the dynamics

can be adequately described by a linear model.
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And we will also assume that there is no transverse motion. There is no transverse motion of

the bar. So with these assumptions, let us look at a circular bar, so here I have a circular bar,

made of material of density say rho as an area of cross section, which may be a function of

the special coordinate x, the shear modulus or the modulus of rigidity is represented by G and

this has a length l. 

Now at any location x, the field variable that measures the torsion in the bar at the local

torsion displacement of the bar is represented by this phi x, t so at any location x at any time

t. This is the torsional displacement of any cross section. Once again we are going to derive

the equation of motion of such a bar in torsional vibrations using the Newtonian approach, so

we are going to consider a small portion of this bar between the special coordinates x and x+

delta x. 

Now on the right end of this bar, let us consider the movement represented by M, x + delta x

at time t. On the left end, you have the movement on the cross section as M (x, t). Now inside

this little element, we are going to consider a ring of certain radius r. So I will draw this

portion, this ring separately. Now consider in the undeformed ring, 2 axial lines like this and

the corresponding radial lines here.

Now this little element when the bar is under torsion, there will be a differential  rotation

between the left phase and the right phase, so because of this differential rotation, this red

element which is somewhat like a rectangular element is going to take up this configuration.



So if you look at this angle that is the small rotation, the differential rotation between this

phase; the left phase and the right phase. 

On the other hand, if you look at this angle, this is nothing but the shear strain experienced by

this initially undeformed red element. Now this shear strain is a function of the radial position

of this element. So if I draw these 2 elements once again, so this was the red element, this

was before the deformation, this is green element after deformation, so this is the shear strain

in this element. 

So with this kinematics, we can write or the radius of; so this is the radial location, so we can

write r times delta phi, which is this small length, r times delta phi must be = this length

which is delta x times the shear strain, so that would imply upon taking delta x tends to 0,

which I  can also write  as;  so this  equation that  we obtained from the kinematics  of this

torsional deformation that of the bar.

We can now relate the shear strength at any radius r, at any time t,  in terms of our field

variable which is phi. 
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Of course, this is also a function of x, because phi is a function of x. Now we are going to use

this kinematic relation further. So let us look at the constitutive relation of the material. So we

know from Hooks law, that the shear stress is proportional to the shear strain, so the shear

stress is G times the shear strain. So if I use the kinematic relation in this expression, I have

the expression of the shear stress, at any radius r, at any location x, at any time t.



So once I have the shear stress, I can integrate this, multiply this with the area and integrate;

multiply  this  shear  stress  with  this  area  and  integrate  over  the  whole  phase  to  get  the

movement, the torque in the bar. So M at any location x at any time t, I can write from the

shear stress, times the small area of this ring and the arm, so the arm times, this shear force,

so that will be as the movement, the torque.

Now if you integrate this over the full phase, then you get the total torque on this phase of the

bar. So if I substitute this expression, I have this and since these 2 terms, the G and phi, they

have nothing to do with this integral of the area, so I can safe them by bring them out and this

therefore is the torque and we know we can easily identify this integral as a polar movement

of the area.

So now I  have related  the torque  at  any cross  section  in  terms  of  my displacement,  the

torsional displacement. Now I can write down the equation of motion. So first I will write the

movement of inertia of this ring that we have consider. So this movement of inertia of the

ring is the mass of the ring times the radius square, so mass of this ring can be written as rho

times dA, is a mass per unit length * delta x that is the mass of this ring times r square.

So this if I integrate over the full area, then I get the movement of inertia of this element that

we have considering. So this is the movement of inertia times the angular acceleration, which

is the double time derivative of our field variable phi and that must be equal to the balance of

torques and we have already have this expression of movement or the torque at any phase

here, so I can write this as; 

Now if I divide this whole equation by delta x and take the limit, delta x times to 0, and if I

identify this r square da integral, rho can come out of this integral. So r square dA integral

over the phase is once again the polar movement of the area, so I can write rho Ip, the angular

acceleration must be equal and that gives us upon rearrangement, the equation of motion of

torsional dynamics of a bar; a circular bar. 
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Now let us look at some examples, so if you have say a uniform bar, then the equation of

motion once again simplifies to rho Ip phi tt – G Ip phi xx = 0. Now the boundary conditions

for this problem, which will complete the description of the physical situation, so here this

bar is connected to the wall and therefore this end of the bar cannot have any rotation. So this

again is a geometric boundary condition.

On this end of the bar, the torque is 0, which is therefore given by; so this is the geometric

boundary  condition,  whereas  this  is  the  on  the  right  end  of  the  bar,  we  have  a  natural

boundary  condition.  So  with  this,  we  complete  our  discussions  on  axial  and  torsional

vibrations of bars. Now to summarise, we have considered axial vibrations of bars, we have

derived the equations of motion.

And we  have  seen  the  boundary  conditions  of  2  types;  namely  the  geometric  boundary

condition and the natural boundary condition, then we have also derived the equations for a

bar interacting with the discrete system and then finally we have looked at the dynamics of

torsional  vibrations  of circular  bars and we have derived the equation of motion and the

boundary condition. So with that we end this lecture. 


