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So, we have been discussing about vibration of membranes in the present lecture. So, today we

are going to look at the vibration of a circular membrane. So, we have in the previous lecture

looked at the rectangular  membrane.  So, today we are going to look at a different geometry

which is the circular geometry. 
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So, consider this as a circular membrane. We are going to consider membrane with fixed edge.

So, the radius of the membranes let it be small a, any point on this membrane is denoted using

the coordinates r and the angular coordinate pi. So, using this and our field variable which is the

displacement of the membrane from its equilibrium position measured at a coordinate location r,

phi, at time t. So, this is a transversed displacement of a point at r, phi at time t. 

So, the equation of motion so if mu is the areal density and T is the force per unit length. So, in

the  fuller  coordinates  the  Laplacian  operator  along  with  the  boundary  condition.  So  the

displacement  on the boundary is  zero.  So,  we will  be looking at  the model  solutions of the

circular  membrane.  So we are  interested  in  solutions  of  the  form of  this  structure.  So,  if  I



substitute  this  solution  in  the equation of  motion and in  the boundary condition and I  do a

rearrangement by removing this exponential i omega t. 

So, this along with the boundary condition so then this defines our eigen value problem. So, this

is  our  eigen  value  problem which  we must  solve  in  order  to  determine  the  circular  natural

frequencies and the modes of vibration of a circular membrane.  So, we search for separable

solutions once again as we did for the rectangular membrane we look solutions 
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Which are separable in r and phi and this is motivated by the fact that these are independent

coordinates. So, they can be separated out. So, we are searching for solutions with the structure.

So, let us see what happens when we substitute this in here. So, let me indicate delta delta R with

the prime and derivative with respect to phi with dots. So, here I have used delta delta R by

prime and dot indicates delta delta phi. 

Now, I do some rearrangements I divide this through by this product R into phi. So, then now

you see that this capital R is only a function of the coordinate R while phi is only a function of

the coordinate phi. So, if this which is a function of R and this which is purely a function of phi.

So, and that must add up with a constant which is independent of R and phi and that has to be

equal to zero for any R and any phi then it is natural that these are all constant. 



So, which means I will write it as minus of nu square for reason that will be clear later since I

want you see this is going to give me this equal to zero. So, this is purely a function of the

angular coordinate phi. And we must have periodicity in this function otherwise at phi equal to

zero and phi equal to two pi this function will not match. So, we must have now that can be

ensured when phi is proportional to i m phi where m can be zero, plus or minus one, plus and

minus two etcetera. 

So, we must have essentially what this means is we must have solutions in terms of cos m phi

and sin m phi. So, that can be written in this complex form. Now, this solution is possible only if

I choose this constant to be minus of nu square and nu cannot be arbitrary we know that nu has to

be an integer so that this precocity condition is satisfied. Now if you have this as minus m square

so I can write.

So this equation then becomes can be written as let me define this as gamma square and this is

minus of m square. So, that must be zero where gamma is omega over c. So, this is the equation

governing our radial function. So, this equation was for the angular function pi so this is for the

radial function r. So, for the angular function we must have solution like this so our solution till

now what we have is like this. 

So,  this  function.  Now, we  have  to  solve  for  this  radial  function.  This  has  in  addition  the

boundary condition so if you use the boundary conditions then you have R at the periphery of the

membrane at R equal to a must be equal to zero. So, this equation has to be solved with this as

the boundary condition. Now, this is a second order ordinary differential equation but we have

only one boundary condition so let us see what happens. 

Because  this  is  going to  lead  us  to  something  interesting.  Now, this  differential  equation  is

known as the Bessel differential  equation and we have come across this differential equation

when we discussed the hanging string if  you recall  there also we had the Bessel differential

equation except that this term was zero. So, let us see then we can draw an analogy from the

hanging string and you can understand why only this one boundary condition will suffice. 



The other condition comes from the finiteness of the solution. So let us see what is the solution

of the Bessel differential equation? So, let us see what is the solution of the Bessel differential

equation? 
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So, the solution of the Bessel differential equation so this is a very standard differential equation

in mathematics and the solution can be written as some constant in this form. So this is called the

Bessel functions of first and –so these are of order m Bessel functions. This is the first kind and

this is the second kind and they are of order m. Now, since we have the solution as a liner

combination of these two functions let us once have a look 
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To just have an idea of these functions so this figure shows the Bessel function of first kind here

I have plotted only the zeroth order Bessel functions Jo and Yo as a function this argument S. So,

here  actually  for  integral  values  of  the  order  this  Bessel  function  of  the  second kind has  a

logarithmic  singularity  at  argument  equal  to  zero.  So,  this  is  known from theory  of  Bessel

functions.

So, what  this  means for our membranes  is  that  at  R equal  to zero this  function is  going to

introduce logarithmic singularity that means this is going to go to minus infinity which we do not

want. I mean physically we do not have this kind of a behavior. So we must drop this function

from our solution and Bessel functions of all  order of second kind they have this  kind of a

singularity. 

So we must write our solution or express our solution only in terms of the Bessel function of the

first kind. Now if you do that now we have just one boundary condition. So R a is equal to zero

and  that  implies  –so  a  is  the  radius  of  the  membrane.  So,  we  must  choose  gamma.  Now

remember that gamma is omega over c. So, we must choose this gamma so that this condition is

satisfied. Now, let us look once again at the Bessel function of the first kind.
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Let us say with m equal to zero. So, zeroth order, this function goes to zero at these points. So, in

these figure there are only three visible but then this function has infinitely many roots so this



goes on and on. So, the first three values of gamma times a which are now indexed with m and

the root numbers. So, this takes the number one, this is the second root, this is the third root. So,

one is 2.405. So, this approximately that 2.405. 

This is 5.52 and the third root is 8.654. So, the first three solutions of this condition therefore

obtained here. So therefore our frequency is also now get indexed. Let me first write this in this

form. So, this is gamma m and times c. Now gamma m, n let’s say omega 0, 1 as we have seen is

2. 405 over a, times c. So, that is the circular eigen frequency corresponding to the mode 0. 1 and

in this way you can determine the higher modes. So, here I have listed out. 
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The some of the higher modes as well so these are with m equal to zero these three what we have

seen. And these are with m equal to one. So, one the first root with one, the second root etcetera

and therefore the circular  eigen frequency or national  frequency of the circular membrane is

given in this form. So let us once again have a look therefor so our solution was in this form. So

when m equal to zero, we have what are known as the axisymmetric modes. 

And for n not equal to zero we have the unsymmetric modes. So this is essentially finding roots

of the Bessel functions of the first kind. Now, finding these roots is actually a little cumbersome

though in various software or numerical analysis program. These are coded.


