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Today, we are going to initiate some discussions on Vibrations of membranes, so today first we

are going to look at  the dynamic modelling of membranes,  now to begin with what are the

membranes?  A membrane  is  the  two  dimensional  elastic  continuum  which  cannot  resist  or

transmit  bending  moment,  now  when  we  discussed  about  strings  the  string  was  a  one

dimensional elastic continuum which does not resist bending moment.

But  now this  is  membrane is  a  two dimensional  elastic  continuum but  then there  are  some

fundamental differences between string and a membrane which means that membrane is not just

a two dimensional extension of string, so let us first in order to start our dynamic modelling let

us first enumerate our assumptions that we make for the modelling mathematical modelling of

membranes.
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So first of all we where do we find membranes we find membranes in ear drums, and drum heads

and in certain kinds of microphones etc. now we study membranes not just to study drum heads

or ear drum or microphones, but to understand this two dimensional elastic continuum which is



simplest  of  its  kind  because  it  does  not  transmit  bending  moment,  now in  order  to  model

membranes.

We will assume that the membrane is flat and the deflection is purely transverse, so when you

have  let  us  say  an  inflated  membrane  let  say  balloon  in  that  case  the  dynamics  is  more

complicated because the deflection can no longer be considered to be just transverse there is a

coupling  between  the  transverse  and  the  in  plane  modes.  So  we  are  going  to  make  this

assumption that our membrane that we analyze is flat.

So  that  only  we  have  to  consider  the  transverse  deflection  of  the  membrane.  The  second

assumption that we make is that the slopes are small, so if the deflection is so you have certain

deflection then by small  slope you can imagine that the maximum deflection divided by the

characteristic dimension of the membrane. So suppose I have a membrane of let us say this size

than the transfers deflection should be much much smaller than this dimension or this dimension

of the membrane.

So slopes should be small, we assume that the tension does not so the tension is uniform and it

does not change with the deflection so it is constant it does not change with the deflection and

finally, we also assume that the thickness does not change. So under these assumptions we are

going to now look at the modelling of the membrane.
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So  let  me  first  draw  an  infinitesimal  element  of  this  membrane,  so  here  we  have  I  have

considered an element of this membrane which was initially flat on the x y plane, so we have in

order to locate the membrane we consider this field variable w which is a function of now x y

and time. So here we have these forces, so I have taken a little element of the membrane and I

will draw the free body diagram.

So if this point is x y, I will denote this as the force on this edge as T so here I have so this is dx

and this is dy similarly, the force on this edge is T x y t, so these are the forces acting on this little

element now here this T is the force per unit length so you can think in this way that there will be

stresses on this cut. So if you integrate this stress over the thickness then you obtain this T, which

is force per unit length.

So stress integrated over the thickness of the membrane is force per unit length so some kind of

resultant stress resultant, using this we are now going to write down the equation of motion, so

let me consider this little element so the transverse dynamics so let mu be the mass per unit area

so mu is the mass per unit area. So the area of this element may be written as mu times so dx into

dy.

So that is the mass of this little element times the acceleration in the transverse direction that

must be equal to the net force in the transverse direction, so I can write so this is - so this T is the



force per unit length of the cut now, because it has been indicated over the thickness so it is equal

to the force per unit length of the cut. So for example the force because of this on this face is T

times dy because this length of this space is dy.

So that is the force but it must have so I must take a component which is the in the transverse

direction so that component, so if this angle let us say is pi then I must have sin, so I must take

sin of pi, to find out the component of this force in the transverse direction now sin of pi is

approximately equal to tan of pi and that is equal to del w del x. So to find out the transverse

force because of this I will use del w del x at x + dx and y.

And of course at time t, and on this side it would be del w del x at x y and similarly, from these

two edges so this T dx is the force so since we are assuming that the tension in the membrane is

uniform so it’s essentially isotropic is homogeneous so everywhere its T, though I have written it

like this to indicates that this vector might be different so magnitude wise it is same. So here it is

del w del y is in this direction it is del w del y.

So this must be the equation of this must lead us to the equation of transverse dynamics, so if you

divide throughout by dx dy and make some simplifications, so this so del w del x at x + dx so let

me write this down so del w del x x + d x, y written as and so on. So I can have an expansion the

Taylor series expansion of del w del x at x + d x, y in terms of del w del at x, y and del w del x

and its higher derivative at x, y.

So using this expansion here I can therefore finally, write this as, so from this will contribute a

term del square w del x square and this is going to contribute the term del square w del y square,

so that implies, now this is the Laplacian of w and this can also be written as. Where this c is - is

once again looking at the structure of this equation and the dimension of this quantity so this is -

this has a dimension of speed, so this is the speed of transverse waves in the membrane.

So, this is the transverse waves speed in the membrane, so this is the structure of equation for

transverse vibration of membrane, now the you see that here we have double derivative in x as



well  as  y, so  we would  require  boundary  conditions  at  on  this  edges  so  let  us  look at  the

boundary conditions.
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So if you have let us say a rectangular membrane,  please note one more thing that we have

derive the equation considering the Cartesian co-ordinate system we will  look at  the general

situation in a moment, so if you have this x y plane and a flat rectangular membrane then if this

is fixed on this edges then we can easily write the boundary conditions, so at x equal to zero that

could mean this face and for all of y and for all time this is fixed.

Similarly, on this face we would have w at x equal to a and all of y and for all time must be zero,

on this edge for all of x and y equal to zero this must be zero and on this edge, so when the edges

are  fixed then  you have zero  displacement,  there  is  another  possibility  where  you can have

Sliding edge, so in a sliding edge the membrane can, so it is very similar to the sliding edge of a

string.

So if  you have  an  edge of  a  membrane  which  can  slide,  in  that  case  the  condition  at  this

boundary let us stay at x equal to a, it is very similar to that of the string so tension times the

force per unit length times the slope that must be zero, so this is the force per unit length at this

edge so the whole thing is, so this is the - the tension in the - in the membrane the force per unit

length.



So we must take the transverse component  of this  force so that is determined by taking the

multiplying it with the derivative of w with respect to x as we have seen, so that must be zero for

a sliding boundary.
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Now when we go to the Polar coordinates, we use polar coordinates when we have a circular

membrane, so suppose you have a circular membrane of radius a, then first of all the equation of

motion  for  this  membrane,  so we have  the  equation  of  motion  for  a  rectangular  membrane

written out in this form, so we consider we can derive the equation for a circular membrane from

this by simple co-ordinate transformation.

So if you consider that the radius radial co-ordinate r is square root of x square + y square and pi

is  tan  inverse  y  over  x,  so  using  this  you can  derive  these  operators  del  del  x  in  terms  of

derivative with respect to the radial and the angular co-ordinate, so if you use these transformed

operators then finally you can get the equation of motion in the polar coordinates so these are

obtained - this is obtained as.

Where now w the field variable is the function of r pi and t and for a fixed boundary we have so

the boundary condition is quite simple, now this choice of coordinates actually is guided by the

boundary, so for simple boundaries like rectangular membrane or circular number the choices is



very clear but for other shapes, some of which we are going to discuss later on we will see how

they are dealt with so here we have discussed about right now about Newtonian formulation.
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Let us also look at the Variational formation, so the variational formulation for the dynamics of

membrane once again I mean to motivate so the variational formulation is quite powerful not

only  it  gives  us  the  equation  of  motion,  but  also  the  boundary  conditions  and  even  more

important than that it gives us methods by which we can solve the or discretized the dynamics of

continuous systems for example we have looked at Ritz method.

So for that reason we must also discuss the variational formulation for the membranes now to

begin with we write down the kinetic energy expression of membrane so if w is our field variable

then half, so we have considered mu as per unit area, so mu times dA is the mass of a little

element of the membrane, so half mass times velocity square and this when we integrate over the

area of the membrane we are going to get the total kinetic energy of the membrane.

Next we would like to find out the potential energy when the membrane deflects, so to determine

the potential energy we have consider that the force per unit length the tension in the member the

stretch in the membrane so that remains almost constant it does not change so if you think about

it in this way that the stress and the strain, if the stress in a material because if stress remains

fixed only then the force per unit length which is determined by the integrating the stress.



So that must also be constant because T is fixed so the energy per unit volume is given by the

area under this, so it must be this sigma in the x times epsilon in the x + sigma in the y times

epsilon in the y, so this is per unit volume, so you must integrate this over the volume so first

over the thickness and then for the area of the membrane so xi is along the thickness direction.

Now this stress so this is all taken almost uniform over the thickness so this turns out to be sigma

in to h so sigma is T over h and in both direction is the same, now the strain we have seen from

the case of the strain the strain is half of del w del x whole square, so in the other direction as

well we must have, now so therefore finally when you substitute all these expressions in here, so

this is what you will get.

Now this can be written as in a co-ordinate independent manner we can write this, where this

delta is for the Cartesian, so this is the gradient of this field variable the magnitude square of the

- of that vector the gradient of the field variable, now this is the potential energy 
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So finally our Lagrangian, so that - so that is the Lagrangian and from Hamilton's principle we

can - we can write so this must very – vanish, so the variation of the action integral which is the

integral over time of the Lagrangian between two time points so that variation must vanish, so if

you consider this Lagrangian and take the variation.



Now here I have used this property that the variational operator commutes with the gradient

operator, now this term I will integrate by parts with respect to time once, now for this term let

me, so this term in order to simplify this term let us look at this identity, so I am taking the

divergence of a vector so this is the vector and this is a scalar so the scalar multiplied by a vector

and we know that this turns out to be.

So this is the gradient of the scalar dot the vector and so this is the divergence of this vector, now

so therefore I can use this here to rewrite this left hand side now this term goes to zero because at

t1 and t2 the - there cannot be any variation, so what I am then left with is this so this goes on

this side, so this comes with positive and this is the Laplacian, so this must vanish.
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So then now here I have the divergence of vector quantity so here I can use the Gauss divergence

theorem, so which says that so the divergence of any vector over this area integrated must be

equal to this vector dot the normal to the boundary so integrated over the boundary, so if you this

here, then we have boundary term arising out of this which so this integral over the area of this

term that gives us this boundary integral dot the normal to the boundary.

Now once again we apply the argument that the variation over the boundary and over the domain

are independent so therefore we obtained directly from here the equation of transverse dynamics



that we had obtained before, now we have from this boundary term we obtained the boundary

conditions,  so we must have,  so this  calculated at the boundary of course, this  is sometimes

written as, so it’s the normal derivatives.

So  gradient  dot  the  unit  normal  at  the  boundary  is  the  derivative  along  the  normal  to  the

boundary, so this is a this boundary condition is a natural boundary condition whereas this is the

a Geometric boundary condition now let us consider this example.
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So if you have for example a rectangular membrane, so the unit normal at the boundaries, let us

say this, so let us understand this the natural boundary condition which says, so for example at

this  boundary at the right boundary at  x equal to a, so n is 1 0, so therefore so at  the right

boundary you will have this condition, if it is dynamic - natural boundary condition.

If the boundary is fixed, then of course you have the geometric boundary condition which says

that the displacement is zero. now just briefly let us look at the - the polar coordinates, so the

Lagrangian  in  the polar  coordinates  may be written  as,  so in the case of let  us say circular

membrane you have the kinetic energy and the potential energy and of course there is a one half.

Now so in the general case suppose you have an arbitrary boundary so here, so if you have an

arbitrary membrane then you can so this is the boundary, you can represent the unit normal ds



and then the boundary conditions for an arbitrary boundary can be written in terms of more

general coordinate free notation.

So finally you have in the coordinates free notation the equation of motion so corresponding to

for example the Cartesian coordinates this is nothing but and for the polar coordinates, so this is

the  operator  and the  boundary  conditions  in  can  be  written  like  this,  so  this  is  the  general

representation  of the equation of motion of a flat  membrane which is  undergoing transverse

vibrations.

So to conclude, we looked at the dynamics of membranes both from the Newtonian as well as

from the variational perspective in the following lectures, we are going to study the vibrations of

membranes with circular and rectangular shapes so with that we conclude this lecture.


