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Today, we are going to discuss the vibrations of rings and arches. In the previous lecture we

initiated some discussions on the dynamics of curve beams and we had discussed about beams

with constant curvature which are in plane. So, before we look into the vibrations of rings and

arches let us recapitulate briefly what we discussed in the previous lecture.
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So we considered, so curve beams are found in various civil structures like bridges. They are

used in arches and various other places. Now, we looked at the dynamics in the previous lecture

on the dynamics of curve beams and we observed that the important aspect of the dynamics is

that the axial  and the transverse dynamics are coupled. So, they are coupled because of this

curvature of the structure of the beams. So, we have made some simplifying assumptions when

we formulated the dynamics we assume that the beam is still plane though it is curve in a plane. 

We assumed that the deflection is much smaller than the thickness of the beam and the thickness

in turn is much smaller than the curvature which was assumed to be a constant. And we also



assumed that the other Bernoulli hypothesis holds which means that a cross section of the beam

which was initially perpendicular to the neutral fiber remains perpendicular to the neutral fiber,

remains flat and perpendicular to the neutral fiber even after deflection. 

So, we neglected sheer which means that we considered that the beam is infinitely stiff in sheer.

So, with such considerations in the previous lecture we have derived the equation of motion

using the variational formulation. 
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So, we considered the Lagrangian which we wrote as the kinetic energy minus the potential

energy and the kinetic energy was one half of rho A. Here these are the field variables so u –so

this  is  the  field  variable  for  the  axial  or  circumferential  motion  deflection  and  this  is  the

transverse deflection, W is for the transverse deflection. So, this and minus the potential energy

we calculated as –so here the angle varies from say zero to whatever angle you have so the

angular extent of the beam. 

Now, in the previous lecture we also made a simplification based on certain redefinition. So, let

us consider some non-dimensionalization. So, the time is none non-dimensionalization so t tilde

is the non-dimensional time u is non-dimensionalization using the radius of curvature of the

beam.  Similarly, w was  non-dimensionalize.  Now using  this  non-dimensionalization  we can

rewrite this Lagrangian. So, this is our Lagrangian here, S r we had defined as the slenderness



ratio. 

So, this is slenderness ratio which tells us how slenderness the beam is. So, higher the value the

more slenderness it is. So, it is the radius of curvature divided by the radius of gyration of cross

section about the neutral axis. So, with this Lagrangian we derive the equation of motion.
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So, this was the equation corresponding to u the circumferential motion and corresponding to the

transfer  motion.  We have  these  two  equations.  So,  today  we  are  going  to  first  discuss  the

vibrations of rings. So, the equation of motion so this is the circumferential motion and this is the

radial or the transfer motion. So, we imagine that we have a uniform ring. So this is the radial

direction and this is the circumferential, tangential direction. 

This is the angle theta now the boundary conditions we discussed the boundary condition for the

complete ring like this. So, it turns out to be periodicity condition on the field variables. Now, we

are going to  perform the modal  analysis  of  this  system so we search for solutions  with the

structure. So, we are interested in solutions with this separable structure. Now you see that this is

a function of theta and t now it must be periodic in theta. 

So, we must have solution of the form like this. Where n can take value zero, one, two etcetera.

So, this is to inforce the periodicity conditions. So, satisfy the periodicity conditions that we have



written here. So, we search for solutions of this form now here if n is zero then as you can see it

becomes independent of theta which means then we are talking about axisymmetric modes. So,

modes  which  are  independent  of  theta.  For  non-zero  value  of  n  we have non-axisymmetric

modes.  

So, let us see what happens when we consider a solution like this so we substitute the solution in

the equations of motion.
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So, if you do that then it can check that upon simplification of these equations. So, this is the first

equation.  The  second  equation  reads.  So,  these  are  the  two  equations  that  we  obtained  by

substituting the modal solution found in the equation of motion. Now, for non-trivial solution of

u and W this capital U and capital W we must have the determinant of this matrix. So, we can

write this as matrix. So, determinant of M must vanish. 

So, for non-trivial solutions of U and W. And that leads us to the characteristic equation which

can be obtained easily. So, this is our characteristic equation. Now, we have to solve for omega

from this equation substitute in these two equations and then solve for these eigen vectors U and

W and then we will obtain the eigen functions. So, you see the eigen functions will be complex

like this. So U and W themselves can be complex because you have this i here in these equations.



So, U and W, are themselves complex and hence these eigen functions are all complex. Now, we

have  discussed  already  that  when  you  have  complex  eigen  functions  both  the  real  and  the

imaginary parts of this can be the eigen functions. So what we can conclude is that for a give

eigen frequency we can have more than one eigen function. This is called degeneracy. So, we

have multiple eigen functions for a given eigen frequency. 

Now, let us see, solve this characteristic equation and try to find out the eigen frequencies and

the eigen functions which will characterize the mode of vibration. So, we start with the value n

equal to zero. Let us consider 
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Axisymmetric so n is equal to zero. So if n is equal to zero then you can see straight from here.

So, n being zero. So, this is the characteristic equation for axisymmetric modes. So that would

imply so you have omega equal to zero and omega equal to plus or minus one. So, let us first

look at omega equal to zero. So the eigen vector responding to omega equal to zero turns out to

be if you solve the matrix equation then U and W turns out to be one and zero.

Now, this means that see the solution was –so n is zero, omega is also zero. So this term is absent

and so the motion is –this is one and this is zero. So, which means it is a motion along the

circumferential direction of the ring with zero frequency. So, this is nothing but a rigid body

mode. Which implies that angular momentum is conserved. So, this is not a vibratory mode. So,



next let us look at the other solution which is omega equal to plus or minus one. 

So, in this case if you solve the eigen vector that turns out to be zero and one. So, now there is no

motion in the circumferential direction. So here n equal to zero but omega is plus or minus one

which means it is in oscillatory mode. So, it will be an oscillatory mode which is only in the

radial direction. So, you have something known as a breathing mode. This is sometime known as

breathing  mode.  So, the ring expands and contracts  axisymmetrically. So this  is  a  breathing

mode.


